
 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

OABench™ Version 2.0 Benchmark Name: Dithering

Highlights
 Benchmarks potential performance of a

printer application
 Uses Floyd-Steinberg Error Diffusion

Dithering Algorithm (1975)
 Converts 8bpp grayscale image to 1bpp

monochrome.
 Largely integer math with shifts and

logical compares
 A component of the EEMBC

OAV2mark™

 Implements 11 new data files
compared with OABench Version 1.1

 Implements cyclical redundancy
checksum (CRC) for self-checking as
well as the ability to view processed
output files (new in Version 2)

 Jarvis Grayscale Dithering included for
debugging purposes

History,
Application,
and
Restrictions

The dithering benchmark is representative of color and monochrome printer
applications. The algorithm converts a grayscale image into a form ready for
printing using the Floyd-Steinberg Error Diffusion dithering algorithm. This
algorithm propagates an error quantity from image row to image row,
effectively diffusing errors from the rendering calculations and preventing
unwanted printing artifacts, such as banding.

References: Robert Ulichney (1987); Digital Halftoning, The MIT Press,
Cambridge, Massachusetts; pp. 239-242

Benchmark
Description

The benchmark changes a grayscale 8bpp image to a 1bpp monochrome
image, using a Floyd-Steinberg Error Diffusion dithering algorithm. It uses
two image buffers (one for the source image and a second for the generated
output) and two line buffers to hold error data. Two “error” arrays are used
— one for saving the errors from the current row (used to dither the next
row) and one from the previous row, used to diffuse the errors from that
row to the current pixel. This array must be zeroed out before the first row,
to ensure that no spurious data is left there.

The error array is created such that there is one extra value at either end.
This eliminates special processing at the start and end of each row (but
requires zeroing the additional columns).

Each pixel of the input image file is processed as follows:

1. Calculate an “error” value using the history buffer (weighted values of

surrounding pixels).
2. Calculate a monochrome output pixel value and store.
3. Store “error” value to next line history buffer.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Benchmark
Description
(continued)

For Version 2, datasets are now taken from external data files (the same
.pgm files as found in DENbench Version 1.0), and data is output to files as
well to aid in verification. The input data files are:

 Data
Name

Data File Attributes Picture

Data 1 DavidAndDogs 564x230, 256
shades of gray.
The image has 215
unique colors.

Data 2 DragonFly 606x896, 16
million colors. The
image has 162,331
unique colors.
Highlights, wide
range of contrasts.

Data 3 EEMBCGroup

Shot-Miami
EEMBCGroupShotM
iami: 640x480, 16
million colors. The
image has 181,872
unique colors.
Large number of
fleshtones, highest
number of unique
colors in data set.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data 4 Galileo 290x415, 16
million colors. The
image has 36,557
unique colors, and
also contains "real
black" for over
30% of the
picture, which is
interesting from an
optimization
perspective.

Data 5 Goose 320x240, 256
colors. The image
has 22921 unique
colors.

Data 6 Mandrake 320x240, 16

million colors. The
image has 71,482
unique colors.

Data 7 MarsFormer
Lakes

800x482, 16
million colors. The
image has 91,152
unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data 8 Rose256 227x149, 256
colors. The image
contains 256
unique colors.

Data 9 Dragon 370 x 384, 256

colors, 88 unique
colors.

Data 10 Gradient A grayscale
gradient shading
test pattern. 256 x
256, 256 colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Data 11 Medium A long, thin, black
and white picture
having 37 x 345
pixels, 256 colors,
and 255 unique
colors.

200 iterations are the default, 2 for CRC verification runs.

Analysis of
Computing
Resources

The benchmark effectively stresses four areas of the target CPU:

 Indirect references used for managing internal buffers
 Manipulation of large data sets, since large images will stress the cache
 Ability to manipulate packed-byte quantities, used to hold grayscale pixel

information
 Ability to perform four byte-wide multiply-accumulate operations per

pixel

The instruction mix for this benchmark is very architecture and compiler
dependent, since the main part of the inner loop can be implemented with
add/sub/shift, or multiplies, or MAC instructions depending on hardware
characteristics.

Analysis of
Computing
Resources
(continued)

The C library function memset() is called twice per iteration (for the output
buffer and for the error buffers). No floating-point calculations are used. The
code size is small and the data size is large. By using multiple data sets (and
private EEMBC data for certification), data-focused optimization is
eliminated.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

 The C code must not be changed for Out-of-the-Box unless it must be

modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

 For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

 All optimized libraries must be part of the standard compiler package,
and/or available to all customers.

 Test harness changes may be made for portability reasons if they do not
impact performance.

 For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Rewriting the code to take advantage of
parallelism is allowed so long as the correct answers are achieved using
any arbitrary keys (not just those supplied in the benchmark code).

 For Optimized, optimized libraries can be used if they are publicly
available.

 For Optimized, in lining is allowed.
 Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume data
patterns during optimization.

 Profile directed optimization is allowed using train data set 1,
DavidAndDogs.pgm.

