EM ® An Industry Standard Benchmark Consortium

TeleBench™ Version 1.1 Benchmark Name: Fast Fourier
Transform (FFT)

= |mplementsadecimation in time 256 fixed = Multiple (3) data sets: sine, pulse, and high
point 16 bit FFT using a Butterfly technique frequency
= Allowsfor interleaved or non-interleaved data = FFT isbenchmarked; Inverse FFT (iFFT) is
= Typical FFT used in Telecommunications included in the code for analysis purposes only
applications (e.g. a mobile/cellular phone) » Integer Math with complexity; fitsinside small
L 1 caches.
Application The Fast Fourier transform benchmarks perform tests of a very fundamental agorithm that

underlies a wide variety of signal processing applications. A Fourier transform performs a
frequency analysis of asignal and therefore can be used for filtering frequency-dependent noise or
interference of a transmission, for identifying the information content of a frequency-modulated
signal, and many other purposes. A good general reference for Fourier transforms, algorithms for
computing them, and some of their signal processing applications may be found in The Digital
Sgnal Processing Handbook, Vijay K. Madisetti and Douglas B. Williams, Eds. (CRC Press,
Boca Raton, FL, 1998). The benchmark provides an indication of the potential performance
of amicroprocessor in acoretask used in awide variety of telecommunications applications.

The FFT benchmarks apply to discrete data, which may be obtained for example from an analog-
to-digital converter applied to a continuous signal. All benchmark FFTs use decimation in time
and are performed on 256 16-bit complex points. All data are in fixed-point format, and therefore
scaling must be performed, as needed, to prevent arithmetic overflow. Three different varieties of
input data are used: a square pulse, a high-frequency test module, and a sine wave of a certain
frequency. Benchmark scores for each variety are reported separately. The initia bit-reversa
step is explicitly included.

Benchmark A Fourier transform operates on the principle that a set of N stochastic input data points can be

Description Fourier expanded in terms of N orthogonal exponentials of period N, taken as exp[-j(2n/N)kn].
The n™ element of the data is expressed as a sum over k=0,...,N-1 of these trigonometric factors
(known as twiddle factors), each multiplied by a frequency coefficient. In most cases the data are
available and the frequency coefficients are desired. These are obtained by a similar expansion in
terms of the data; this direction is known as the forward transform. The absolute squares of these
coefficients specify the strength of each frequency in the variations of the data. By convention the
input data are said to lie in the time domain, such that each data point comes at a fixed time
interval from the preceding. The output coefficients then are said to lie in the frequency domain.
An FFT algorithm will produce N such coefficients separated by afixed frequency interval.

For example, if al data points had exactly the same value then the only non-zero frequency
coefficient would be the one at zero frequency (the DC component), since no variation is present.

A fast Fourier transform takes advantage of the fact that the trigonometric factors repeat
periodically. Therefore partial sums can be formed that can be reused many times, so an FFT will
take an amount of time proportional to Nlog(N) instead of N?, as brute-force computation of a
Fourier transform to obtain N coefficients from N data points would require. The base to which
the logarithm is taken depends on the algorithm employed. Very many agorithms are available,
depending primarily on the number of points N. Many common applications rely on the fact that
a single Fourier transform can be decomposed into two equal-sized transforms that are combined
at theend. Proceeding in this manner to repeatedly subdivide the datain halves, one will arrive at

EEMBC Benchmark Datasheet — 2 February 2006 www.eembc.org




EM ® An Industry Standard Benchmark Consortium

a set of simple two-component transforms that must be combined, provided the number N of data
points is a power of 2. Each subdivision is a “stage;” there will be log,(N) stages in the
computation using thistechnique. Thisisthe basis of the “radix-2" algorithm, the implementation
used in the EEMBC Out-of-the-Box FFT algorithm.

A “bit-reversal” re-ordering step is required to complete an FFT because the output coefficients
do not otherwise occur in increasing frequency order. This step may be performed on the input
data (“decimation in time,” DIT) or on the output frequencies (“decimation in frequency,” DIF).
All EEMBC benchmarksuse DIT.

The execution speed of an FFT has had a revolutionary impact on the digital signal-processing
industry. The FFT isafundamental component of very many signal-processing applications.

This benchmark performs an FFT with three different assumptions on the shape of the input data.
These shapes are a sine wave, a square pulse, and a high-frequency test module. The shape may
or may not affect the timing and the accuracy of the output. All input data is 16-bit complex and
the FFTs are performed on N=256 points.

The twiddle factors are supplied in the test harness. Input data and/or twiddle factors may have
real and imaginary parts interleaved or sequential, as specified by C preprocessor parameters (i.e.,
defined at compile time). Whichever choice is made, both have to be treated the same. These
choices do not affect timing. Default is for both to be interleaved. The bit-reversal indices are
also pre-computed and supplied as part of the test harness.

An inverse Fourier transform is also possible (see separate datasheet). This computation is very
similar except that it begins with N equally-spaced frequency coefficients and returns N equally-
spaced time-domain data. A Fourier transform followed by its inverse should yield the original
data, unchanged except for computation errors. The default for all EEMBC benchmarksisin the
forward direction. The direction may be set by a preprocessor parameter.

Analysis of The forward FFT benchmark performs integer math on 16-bit signed quantities (the time-domain
Computing input data and twiddle factors). Both data and twiddle factors are assumed to be complex and will
Resour ces therefore each require 256x2 16-bit locations in cache or memory; the output freguency

coefficients will require the same amount.
The code sizeis small and fitsinasmall L1 instruction cache.

It is left to the user to run the benchmark through enough iterations to amortize the overhead
associated with the test harness and initial cache misses. The default for this benchmark is 1000
iterations. ECL will double-check this with other values. Assumptions about data values would
be imprudent, as ECL hasits own private data sets.

Special Notes 1. Each of datafiles must be run to obtain an EEMBC Telemark™ score.

EEMBC Benchmark Datasheet — 2 February 2006 www.eembc.org



