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DENBench™ Version 1.0 Benchmark Name: RSA
 

Highlights 
 Benchmarks the Rivest, Shamir, and 

Adleman (RSA) cryptography algorithm
 Created in part from SSLEAY (the 

open-source Netscape Secure Socket 
Layer source code base courtesy of Eric 
Young) 

 Roundtrip implementation and self-
checking assures accuracy  

 A component of the DENBench 
cryptography sub-suite 

 Computationally intensive and 
accurate implementation of RSA 
algorithm modified to PKCS standards 

 Uses Optimal Asymmetric Encryption 
Padding (OAEP) 

 
 

Applications 
and 
Restrictions 

The RSA algorithm was first described in 1977 by Ron Rivest, Adi Shamir, 
and Len Adleman at MIT. The letters RSA are the initials of their surnames. 
According to Wikipedia, RSA was one of the first “strong encryption” public 
key cryptography schemes. It can be used for both digital signatures and 
encryption. The RSA cipher is used in numerous cryptographic protocols, 
including Transport Layer Security (TLS), Secure Socket Layer, (SSL), 
Secure Shell (SSH), and Internet Protocol Security (IPSEC).  
 
RSA is much slower and therefore more computationally intensive than DES, 
and unlike DES is not symmetrical. Thus, there are different keys for 
encryption and decryption. 
 
Although it has been proven to be vulnerable to certain attacks (including 
timing, man-in-the-middle, and adaptive chosen cipher attacks), it is an 
extremely popular algorithm used in many e-commerce (internet) and m-
commerce (mobile) applications. Some people choose to implement DES, 
Triple-DES, or AES for stronger encryption. The major concern is really the 
“shared secret key” nature of the asymmetric system. Because RSA is part 
of the Secure Socket Layer system used so widely on the internet, and 
because it can be hacked by determined foes, it is now often paired with 
Optimal Asymmetric Encryption Padding (hence the term RSA-OAEP), and in 
fact EEMBC has implemented the benchmark as an RSA-OAEP system. In the 
benchmark, RSA-OAEP are used together with the Public Key Cryptography 
Standards (PKCS). The EEMBC code is based on PKCS 1.5 and OAEP 2.0R1 
and implements Shoup’s improvements to OAEP (in other words, EME-
OAEP). 
 
The EEMBC RSA benchmark is a cipher algorithm that provides an indication 
of the potential performance of a microprocessor or digital signal processor 
subsystem doing RSA cryptographic encryptions and decryptions. 
 
This benchmark, and the source code, is subject to the following restrictions:
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Applications 
and 
Restrictions 

This software is subject to the following Export Restrictions (exportation 
from the United States of America to non-USA countries): Implementations 
of cryptography are subject to United States Federal Government export 
controls. Export controls on commercial encryption products are 
administered by the Bureau of Export Administration (BXA) 
http://www.bxa.doc.gov/Encryption/ in the U.S. Department of Commerce. 
Regulations governing exports of encryption are found in the Export 
Administration Regulations (EAR), 15 C.F.R. Parts 730-774. Compliance with 
export restrictions is the responsibility of each individual EEMBC member, 
not EEMBC. 

Benchmark 
Description 

The EEMBC RSA benchmark handling of private key operations does not 
depend on the private key components being present (for example, a key 
stored in external hardware). The recommended number of iterations is 30, 
and it takes about a second to run on a desktop x86 PC at about 1.7 GHz. 
Checking is by Cyclical Redundancy Checksum (CRC). 

Analysis of 
Computing 
Resources 

The benchmark is computationally challenging: addition, multiplication, 
extensive use of division, bit shifting, matrix math, bitwise operators such as 
XOR, and other operators are used. It is implemented in integer math. This 
benchmark is almost exclusively CPU bound, and the quality of the math 
library as well as memory library has an effect on performance. Memory 
moves are performed repeatedly, so optimized C library mem* functions 
would improve performance. Use of malloc() and heap is extensive, so 
optimizing memory management will yield better results. Sophisticated 
superscalar architectures scheduled by sophisticated compilers (or assembly 
language implementations) can take advantage of some parallelism. 
Architectures that require aligning for good performance but that do not 
automatically pad to obtain alignment will suffer. Odd C syntax with 
numerous breaks and jumps means this benchmark is unlikely to be 
optimized away by compiler trickery, although good standard optimization 
techniques (including loop unrolling and hoisting loads) would improve 
performance. A tool chain must implement a fair fraction of the standard C 
library, including rand() functionality. 

 
 


