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Dhrystone Benchmark 

Introduction and Disclosure 

The EEMBC Certification Laboratories, LLC (ECL) is recognized as the premier 
benchmarking and certification laboratory1 in the semiconductor and software industries, 
and is the authorized certification body for EEMBC.  EEMBC (pronounced "embassy") is 
the industry-standard processor benchmark consortium, and was setup to create reliable 
application-based benchmarks to measure processor (and compiler) performance.   

Despite the growing adoption of EEMBC benchmarks, the Dhrystone benchmark is still 
misused in the industry. To help people and companies evaluate its usefulness, we 
decided to analyze Dhrystone for strengths and weaknesses and explain our findings 
based on real examples.  This White Paper will first explain what "benchmarking" is, how 
it is used, and offer a set of intended uses.  Then, we will explain Dhrystone, exploring its 
creation and evolution and intended purpose.  From there, we dive into the technical 
details of Dhrystone, explaining how it works and what it measures. We then try and distill 
a reasonable set of run-rules consistent with its creator's intent, report some interesting 
scores, and then explore how Dhrystone is being used - and misused - by many in the 
industry.  Finally, we compare and contrast Dhrystone with EEMBC's industry-standard 
benchmarks 

Benchmarking:  Definition and Purpose 

Benchmarking is a method of measuring performance against a standard, or given 
set of standards.    

Standards come about in two ways: 

• Common usage over time (i.e. "the standard against one measures") 

• Purposeful creation by one or more people 

A useful way to characterize benchmarks is whether they are synthetic, or application 
("real world") based.  A synthetic benchmark is created with the intent to measure one or 
more features of a system, processor, or compiler.  Synthetic benchmarks may try to 
mimic instruction mixes in real world applications, or they may be artificial.  Synthetic 
benchmarks are useful in debugging specific features, but they cannot be easily related 
to how that feature will perform in an application.  Because they are useful in debugging 
or isolating specific functionality, synthetic benchmarks tend to be small, though this is 
not a requirement.  

                                                                 
1 ECL defines Certification as the process of re-creating the benchmarking environment, verifying the 
processor and memory bus clock speed, verifying the compiler switches, re-creating the scores, re-
building the code to ensure scores are re-creatable, and so on.  ECL has over 50 separate steps in its 
benchmark score certification process. 
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Application benchmarks, also called "real world" benchmarks, use system- or user-level 
software code drawn from real algorithms or full applications    Application benchmarks 
are more common in system-level benchmarking and usually have large code and data 
storage requirements. 

A third type of benchmarks, called derived benchmarks (or "algorithm-based 
benchmarks") is a compromise between synthetic and application.  As their name 
implies, derived benchmarks are created by extracting the key algorithms (software code) 
and generating realistic data sets from real world applications. This avoids the need to 
execute an entire application, and the benchmark can be used both for debugging, 
internal engineering, and for competitive analysis.  Derived benchmarks, based on real 
application code, represent the best of both worlds and are perfectly suited for embedded 
environments. 

What is Dhrystone?  Definition, Historical Perspectives, Evolution 

Dhrystone is an odd name to the uninitiated.  Created in 1984 by Dr. Reinhold P. 
Weicker, then of Siemens AG, its intention was to measure the performance of computer 
systems, not embedded processors.  Because of the nature of computer systems of that 
era, Weicker focused on integer performance. As the Whetstone benchmark for floating-
point code already existed, Weicker chose the name Dhrystone as its logical counterpart 
in the integer world.  The current version of Dhrystone, Version 2.1 was created in 1988, 
and remains in its original format today. 

Weicker wrote Dhrystone to model what was then viewed as a "typical" application mix of 
mathematical and other operations.  Integer performance predominated, with little or no 
floating-point calculations, and applications could be contained inside small memory 
subsystems.  Throughout Dhrystone’s long history, the benchmark has had to face the 
following revolutions and evolutions that have changed computer architectures.  
Unfortunately, Dhrystone doesn't take into account any of the following: 

• Reduced Instruction Set Computing (RISC) 

• Availability of sophisticated floating point processor units inside main processors 

• Single instruction, multiple data (SIMD) vector processors inside the main 
processors 

• Superscalar RISC designs (multiple execution units inside a single processor) 

• Very Long Instruction Word (VLIW) processors 

• Optimizing compilers 

• Large memory subsystems, including processors and systems with L1, L2, and 
L3 caches 

• Real-time operating systems with sophisticated application programming 
interfaces (API's), multitasking, TCP/IP functionality, and graphical user 
interfaces 

• Large real-time, embedded applications proliferating into practically every area of 
modern life 

• Graphics, multimedia, and communications-intensive applications 



 

 

Throughout this white paper, it is very important to note Dr. Weicker’s long-standing 
sentiment about his creation: 

"Although the Dhrystone benchmark that I published in 1984 was useful at the 
time," said Weicker, "it cannot claim to be useful for modern workloads and 
CPUs because it is so short, it fits in on-chip caches, and fails to stress the 
memory system. Also, because it is so short and does not read from an input file, 
special compiler optimizations can benefit Dhrystone performance more than 
normal program performance. In embedded computing, EEMBC 
(www.eembc.org) is collecting larger real-life embedded-computing programs 
as the basis for benchmarks." Dr. Reinhold P. Weicker, Siemens AG, Vice 
Chairman of the Spec Open Systems Steering Committee.  
http://www.einsite.net/ednmag/index.asp?layout=article&articleId=CA46261&
st   EDN Magazine 10 / 28 / 1999 
 

Dr. Weicker has long ago gone on to bigger and better things.   An important 
computer scientist, renowned in benchmarking and performance analysis, Weicker has 
been involved with the SPEC organization (http://www.specbench.org), recognizing the 
inherent weaknesses endemic with Dhrystone.   

Technical Characteristics of Dhrystone 

The following table provides a concise summary of Dhrystone’s characteristics and 
corresponding strength or weakness: 

Characteristic Strength and/Weakness 

Written in C 
language code 

Strength:  Allows code to be ported to a 
large number of platforms and architectures.  

Very small size Strength: An engineer can quickly master 
Dhrystone. 

Weakness: A compiler writer, or architect, 
can quickly defeat Dhrystone and "design to 
a benchmark."  

Weakness: Minimizes or eliminates stress 
on memory subsystems and easily fits 
inside L1 caches. 

Weakness: Cannot hope to mimic the 
breadth of applications encountered by a 
processor-based system. 

Weakness: Is based on a single 
benchmark comprised of three files:  
dhry_1.c, dhry_2.c, and dhry.h.  There is 
only one set of functions. 

Single, easy-to-
report score 

Strength:  Reported as a single figure of 
merit, similar to the ‘marks’ used by 
EEMBC, has allowed it to gain industry 
traction. Dhrystone is formally reported as 
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traction. Dhrystone is formally reported as 
"Dhrystone 2.1 MIPS". 

Weakness:  Dhrystone users employ 
confusing and ambiguous terminology such 
as DMIPS,  DMIPS/MHz, Rounded 
Dhrystones/second, and Dhrystones/ CPU 
cycle. Furthermore, a "MIP" is actually 1.75 
DEC VAX MIPS. 

Synthetic Weakness: Dhrystone only measures a few 
mathematical and basic operations. 

Integer only 
code 

Strength: This makes it potentially useful 
for simple 8- and 16-bit microcontrollers, 
assuming people don't care about relating 
anything to real world applications.  

Weakness:  Does not measure multiply-
accumulate, floating-point, SIMD, or any 
other type of operations. 

Library-
dependent 
performance 

Weakness:  Dhrystone’s execution is 
largely spent in standard C library functions, 
such as strcmp(),strcpy(), and 
memcpy().  Compiler vendors generally 
provide these libraries that are typically 
optimized and hand-written in assembly 
language.  While you may think you are 
benchmarking a processor, you are really 
benchmarking are the compiler writer’s 
optimizations of the C library functions for a 
particular platform.    

No Evolution Weakness:  Compiler writers have long ago 
determined Dhrystone’s functionality.  The 
secret to good benchmarks, as SPEC and 
EEMBC have shown, is to stay ahead of the 
compiler writers to ensure that the 
processor and system is benchmarked, not 
just the compiler. 

No Third-Party 
Certification 

Weakness:  Dhrystone’s lack of an official 
certification process (as defined in Footnote 
#1) has eliminated this benchmark’s 
credibility.  Certification can only come from 
inherent value, and there is very little value 
in Dhrystone to modern processors or 
compilers. 

No Source 
Control 

Weakness:  Dhrystone is available from 
multiple sources, and while most companies 
attempt to use Weicker's original source, 
some servers have "gone dark" as the age 
of the Web increases.  There is great 
potential that a company, or an individual, 
has modified the code to its advantage.  



 

 

has modified the code to its advantage.  
Some companies report Dhrystone 1.1 
scores - an even older version of the code. 

No Standard 
Run Rules 

Weakness:. Due to the lack of a standards 
organization, Dhrystone’s original runtime 
rules have eroded into a state of confusion, 
thereby turning it into a performance 
measurement that is easily circumvented. 

No Disclosure 
of Benchmark 
Environment 

Weakness:  The benchmarking 
environment, including processor and 
memory clock speed, compiler switches, 
and libraries, are not disclosed nor required. 

Inlining or 
excessive 
compiler 
optimization 
destroys the 
benchmark 

Weakness.   Instructing the compiler to 
inline the code, greatly increasing the 
benchmark's susceptibility to code 
elimination, typically breaks Dhrystone's 
apocryphal "rules".  The benchmark 
essentially vanishes and scores get 
unrealistically good. 

Dhrystone Scores:  Real World Examples 

One of the most important defects in Dhrystone is that it is often unclear what version 
is being quoted.  Furthermore, since there are no "disclosure rules" or independent 
certification of scores, companies and individuals are free to state, or not state, anything.   

For example some companies might publish a score for Dhrystone 1.1 running on its 
latest processor core.  Dhrystone 1.1 has been obsolete for many years and Dhrystone 
1.1 scores are not comparable to Dhrystone 2.1 scores (the current version).  But 
because there is no industry-standard group to manage the process and rules, and 
ensure a common code base, there is no consistency between vendors.   

Dhrystone Areas of Optimization – Distilled Run Rules 

As Table 1 indicated, Dhrystone is subject to various weaknesses that companies 
exploit.   ECL studied the Dhrystone “rules” as envisioned and published by Dr. Reinhold 
Weicker to determine if some representative companies have violated the rules. 

1. You may not re-write or change the code inside the main “timing loop” – that is, 
the timed portion of the C source code must not be changed.  Subtle changes 
can influence, sometimes dramatically, the scheduling of certain instructions.  
Compilers are pattern matchers – if you change the code so that your compiler 
can isolate Dhrystone’s peculiar code pattern, the compiler can select a 
Dhrystone-optimized code template.  Unfortunately, this has limited applicability 
to real application code. 

2. No Inlining Allowed.  While you can link in standard C libraries, and indeed you 
can inline those, you cannot globally inline the Dhrystone code. Unbeknownst to 
the programmer, some compilers may ignore a directive not to inline, potentially 
making it necessary to dump code to assembly language to verify what has 
occurred. 
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3. Separate compilation.  Dhrystone tried to mimic how real programs are written 
linking separate modules together. This reflects 1970’s style "structured 
programming" techniques that are still used today.  Dhrystone’s two C source 
files and header file must not be combined and compiled as one step.  That 
there are only two C source files means this is not a very difficult barrier for most 
compilers (and compiler writers, having extensively studied Dhrystone, don't find 
this terribly "real-world"). 

4. Because Dhrystone scores are so heavily dependent upon C language functions 
that copy and compare strings (called strcmp() and strcpy()), Dhrystone 
rules allow compilers or assembly programmers to optimize these functions.  In 
fact, most “smart” compilers have these library functions written in assembly 
language.  Another trick is to optimize strcpy() by making alignment and 
fixed-length assumptions for the input strings, but in no case can these functions 
be optimized in a Dhrystone-specific manner (such as assuming the content, 
positioning, or length of the strings).  In point of fact, this "processor benchmark" 
can spend between 10% and 20% of its time in these functions! 

5. You cannot use post-processing tools (after linkage) to optimize.  These illegal 
optimizations typically fall under the heading of feedback-directed optimizations, 
and are particularly handy when used with an architecture that has branch 
prediction and speculative execution 

To understand how different vendors use the Dhrystone benchmark ECL measured 
Dhrystone on cores from ARM Ltd and MIPS Technologies, two leaders in the 
embedded-processor industry. Both companies cooperated fully with ECL and provided 
all necessary tools and support. 

Analysis of  MIPS Code and Score 

MIPS Technologies did not violate the Distilled Dhrystone Run Rules. MIPS 
Technologies did not inline the code, although the compiler does align the data along 64 
bit boundaries.   

ECL was able to re-create MIPS benchmark environment and obtain exactly the same 
scores.  We hand inspected the source code MIPS provided us, and found that MIPS did 
not change the code inside the timing loop of Dhrystone, and in porting MIPS did nothing 
to alter the code. 

MIPS used an interesting bit of magic they Gideon's Algorithm.  For strcmp(), it reads 
the natural word and compares that to the first word in the string compare.  If it gets a 
match, it assumes that there is a word alignment, and then it picks up the next word, and 
so on until there is a word that is not aligned along the natural word boundary.  Then, of 
course, it must compare byte by byte.  This saves a bit of time, naturally, and accounts 
for some of the performance differences between MIPS and ARM. 

ECL measured Dhrystone on the 5kc core, a single-issue 64-bit processor with an 
integrated multiply-divide unit. The compiler schedules divisions for this unit and this 
results in some score improvement.  To compare and distill the effect of this multiply-
divide unit, we used two additional compilers to see if they supported this feature.  The 
Wind River Diab Data C compiler emitted highly optimized code that showed the 
architecture to full advantage, including aligning data along natural word (64 bit) 
boundaries.  Another MIPS compiler vendor was less aggressive, and this points out that 
compiler selection matters - sometimes as much as 10-40%!    However, using 
Dhrystone as a benchmark for compilers is flawed - there simply aren't enough different 



 

 

kinds of instructions in Dhrystone, and as we have seen libraries matter a great deal 
more than they should. 

The 5kc's inclusion of the multiply-divide unit also proves a point about comparing 
seemingly similar architectures.  The ARM 1026-EJS and the MIPS 5kc at first blush 
appear very similar:  both are single-issue machines with similar L1 cache sizes, and so 
on.  The MIPS part is a 64-bit part, and the ARM part is a 32-bit part, but architecturally 
they are more similar than dissimilar.  The multiply-divide, when utilized with suitable 
instructions from the instruction-set architecture, gives the 5kc a slight performance 
boost, and so does the effect of the 64-bit fetches. 

Note, however, a nearly fatal flaw with using Dhrystone as an embedded benchmark:  
nowhere is code and data size documented and reported, and nowhere is there a 
disclosure about the number of gates (transistors, die-size area) required by the 
processor.  In the embedded world, often memory is the most expensive part of a design.  
Memory requirements have a significant effect on system cost and power consumption.   

5kc processor, 

40 MHz, TSMC process 

Column 2 

MIPS 32 Bit 5kc using 5kc 
binaries 

Column 3 

MIPS 32 Bit 5kc using 4kc 
binaries 

Dhrystones per second 92889.03451 87697.20141 

Dhrystones / MHz 1.321666368 1.247794665 

Rounded Dhrystones / 
MHz 

1.37 1.25 

MIPS 5kc Dhrystone scores, 40 MHz TSMC process part 

Table 2 shows a number of performance metrics based on Dhrystone.  Column 1 
consists of the typical Dhrystone metrics and other derived calculations.  Most scores are 
reported as Dhrystone MIPS/megahertz (abbreviated as DMIPS/MHz) and/or as VAX 
Dhrystone MIPS (sometimes just called DMIPS). 

The number of loops we ran Dhrystone through (in this case, 20,000) had little effect, 
indicating another Dhrystone weakness:  it’s small size allows it to easily fit inside 
small L1 caches, therefore, after a few thousand loops the score is constant and 
scales linearly for clock speed.  When we increased the loops to 50,000, it had no 
effect - nor when we decreased it to 5000 loops. 

Column 2 indicates that the Dhrystone code was compiled for 64 bits, which is the native 
word size of the MIPS 5kc.  As can be seen by the resulting DMIPS score of 1374 and a 
rounded DMIPS/MHz score of 1.37, this option gave the best results.  We believe that 
taking advantage of 64 bits had a significant effect on performance. 

Column 3 indicates the effects of emitting 32-bit code for the 5kc, resulting in a noticeable 
negative effect on performance.  We generated this by compiling for the MIPS 
Technologies’ 32-bit 4kc core, a different processor, and running the ensuing binary on 
the 5kc.  This procedure validated MIPS Technologies' claim of code compatibility 
between processors.  Performance suffered noticeably with the strcmp() function for 
the 4KC, though, because comparing 32 bit words takes longer than comparing 64 
bit words when the strings are the same size. 
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Analysis of ARM Code and Score 

ARM did not violate the Distilled Dhrystone Run Rules.  ECL investigated the ARM 
1026EJ-S scores using a simulator, as a board with this processor on it was not available 
at the time of this study. 

Previously, we had verified on the ARM and MIPS platforms that using an RTL simulator 
with Dhrystone was practical from a time perspective, since the benchmark easily fits 
inside small L1 caches.  We were suspicious of everything (being a certification 
laboratory, it’s an occupational hazard), so we investigated everything that went into the 
set-up of the environment. 

ECL was able to re-create ARM’s benchmark environment and obtain exactly the same 
scores.  We hand inspected the source code ARM provided us, and found that ARM did 
not change the code inside the timing loop of Dhrystone, and in porting ARM did nothing 
to alter the code.  ARM ran "out of the box", except for allowed modifications to the 
printf() functionality to accommodate its particular environment (MIPS Technologies 
did the same). 

The ARM10 architecture is 32 bits, not 64 bits, and lacks a multiply-divide unit.  A single-
issue machine with cache sizes similar to the MIPS 5kc, the Dhrystone benchmark 
doesn’t measure the performance, power, and code size attributes of any processor.  
Dhrystone score reporting does not require the inclusion of code and data sizes, and 
nowhere is there a disclosure about the number of gates (transistors, die-size area) used.  
Further, this processor includes Jazelle, ARM's Java execution functionality.  Dhrystone, 
of course, doesn't exercise any of that functionality.  How could it?  When it was written, 
the word "Java" only meant an island of Indonesia, or a variety of coffee.  The world has 
changed since Dhrystone was written - but it has not. 

ECL had to manually calculate ARM’s scores since the RTL simulator only produces a 
cycle count.  After running the benchmark for 25 iterations, the system accumulated 
11071 cycles.  Similarly, after 24 iterations, the system accumulated 10649 cycles.  
Subtracting the two cycle counts, we derived that 422 cycles are used to run one 
Dhrystone loop.  To calculate Dhrystone MIPS / MHz: 

11071 - 10649 = 422 cycles 

1 / (422 cycles * 0.001757) = 1.3487 DMIPS/MHz 

The ARM processor has a 16-bit instruction mode called Thumb, which ECL did not try to 
use.  Remember, 1 million instructions per second is not the same as a Dhrystone MIP - 
a VAX VMS 11/1750 actually ran at 1757 DMIPS, and hence the adjustment in the 
equation. 



 

 

 

 In Table 3, we round off and compare the results from the ARM 1026EJ-S and the MIPS 
Technologies 5Kc on that basis. 

 MIPS 
5KC 

ARM 1026-
EJS 

Dhrystones / MHz 1.37 1.35 

   
 

This data indicates that these processors, per MHz, are practically identical - if all you 
consider is Dhrystone. As we have seen, this comparison condemns you with a 
misguided view of the capabilities of each processor.  

Dhrystone Fragility:  How to Win At Dhrystone The Easy Way 

Like all modern computer processor architectures, and the benchmarks that run 
on them, the concept of "architecture" includes "processor, memory, and 
compiler."   But if you wanted to cheat or win at Dhrystone, here is how you would do it 
(and many people do exactly this!): 

1. Run Dhrystone 1.1, or 2.0, instead of 2.1 - and don’t mention the version 
number. 

2. Build special purpose libraries, in assembler, that specifically targets the strings 
in Dhrystone.   

3. Inline the code.  If you wanted to be clever about this, have the compiler inline 
the code, even if you tell it not to.   Talk about an "optimizing compiler!" 

4. Build a processor that is very good at integer and string functions, has a small L1 
cache, has no floating point, Java, SIMD, special-purpose hardware, peripherals. 

5. Build a compiler that recognizes the Dhrystone source code (it hasn't changed 
since 1984, so that shouldn't be too difficult) and just emit the right answer - 
without doing all those nasty little loops. 
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A Solution is Found:  EEMBC and its Benchmarks 

In the 1990s, the new innovations in hardware architecture drove a need for benchmarks 
based on real applications. RISC became embedded.  VLIW became more practical 
using advanced compiler technology. SIMD moved down from mainframe and 
supercomputer processors into microprocessors (i.e. MMX, SSE, AltiVec).  

If your company is Cisco, 3COM, Nokia, Motorola, Visteon, Delphi, Lexmark, or another 
large buyer of embedded processors - how do you determine how much processing 
performance to purchase?  If you buy too much performance, your design will run too hot  
and will consume too much energy (a key factor in portable consumer electronics is 
battery life), and will cost too much.  If you buy too little performance, your design will 
flounder under stress and full loads, and have no headroom for expansion. 

EEMBC, the Embedded Microprocessor Benchmark Consortium, was formed for a 
number of reasons.  EEMBC's goal was to bring real-world, application-based 
benchmarks to the world.  Since one application wouldn't be sufficient, the EEMBC 1.0 
code specifies over 35 separate benchmark kernels, divided into 5 application spaces: 

• Automotive/Industrial 

• Consumer 

• Networking 

• Office Automation 

• Telecommunications 

The Mission Statement for EEMBC is: 

"EEMBC will work collaboratively to develop a suite of performance benchmarks that will 
target key applications of embedded systems. These benchmarks will help provide 
customers an objective means of evaluating processors and controllers." 
A problem can occur so long as there is no independent third-party certification, and a 
canonical benchmark score repository does not exist.   EEMBC solves those problems.  
All scores are available on the EEMBC website, for free.  Dhrystone has no such 
certification, and no canonical main repository of scores exists. 

Currently EEMBC has over 180 scores available for free on its website, and has gained a 
huge amount of support over the years.  In 2002 alone, ARC, ARM, Improv Systems, 
Infineon, Motorola, NEC, SuperH, Tensilica, and Toshiba have published certified scores, 
with more on the way.  Each score has full-disclosure of the environment including the 
compiler  and switch settings.  ECL has re-created each score and passed a set of 50 
checks to assure that the scores are trustworthy.  Furthermore, each score has the 
associated code and data sizes. 

Most importantly, EEMBC is an open process and consortium for members to resolve 
disputes, express opinions, vote, and include new benchmarks into new versions.  It is 
not static - it moves as the industry moves. 

EEMBC 2.0 adds: 

• 8/16 Bit Microcontroller Benchmarks (an entire suite) 



 

 

• Java Benchmarks (an entire suite) 

• MP3 

• MPEG-2 Decode and MPEG-2 Encode 

• MPEG-4 Decode 

• Voice Over Internet Protocol (VoIP) 

• Additional Networking benchmarks 

• Cryptography benchmarks 

• Ghostscript 

A comparison of EEMBC vs. Dhrystone shows the following: 

Attribute EEMBC Dhrystone 

Written in C 
language code 

Yes - All code is in 
ANSI C, except the 
Java Benchmark Suite 

Yes - but it is NOT in 
ANSI C 

Very small size No - both small and 
larger kernels and 
benchmarks - a mixture 

Yes - tiny, two .C 
files 

Single, easy-to-
report score 

Yes - there are 
aggregates such as 
AutoMark or TeleMark. 

Yes - DMIPS 

Multiple kernels / 
benchmarks 

Yes - 35 in Version 1.0, 
another two-dozen 
coming in Version 2 

No 

Synthetic No – based on 
application algorithms 
based 

Yes - completely 

Related to a real-
world machine 
score 

No - no need, since 
over 100 scores 
available 

Yes - based on 
ancient VAX 11/750 

Integer only code No - mostly integer, but 
some floating point, and 
much that can be re-
written for "full-fury" in 
assembler, SIMD, etc.   
Good mixture 

Yes 

Performance too 
dependent upon 
libraries 

No - profiling suggests 
that good libraries help, 
but bad libraries do not 
hurt as much as with 
Dhrystone 

Yes - terribly 
sensitive to string 
functions 
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Dhrystone 

Evolution Yes - EEMBC 1.0 in 
1998, 1.1 in 2002, and 
soon EEMBC 2.0 in 
2003 

Not since 1988 

Third-Party 
Certification 

Yes - EEMBC 
Certification 
Laboratories, 
independent, non-
biased, fair 

No 

Source Control Yes - strong.  All code is 
available to EEMBC 
members, backed up by 
ECL using CVS and 
source management.  A 
"correct version" always 
exists 

No 

Standard Run 
Rules 

Yes - extremely strict, 
but there is a Fully Fury 
(optimized) and an Out 
of the Box set (don't 
touch the code). 

Yes - but open to 
interpretation, and 
the lack of 
certification means 
some companies 
can cheat 

Disclosure Forms 
Required 

Yes - and the 
disclosures themselves 
have to be certified 

No 

Significant Figure 
of Merit Varies 

No No 

Repository of 
Official Scores 

Yes:  
http://www.eembc.org 

No.  Past Usenet 
repositories are 
years out of date. 

Inlining or 
Excessive Compiler 
Optimization 
destroys the 
benchmark 

No Yes 

Full Fury Mode Yes - allows any 
optimization as long as 
you get the right 
answer.  Helps highlight 
peripheral performance, 
and what the theoretical 
maximum performance 
of a part would be like 

No - Run Rules state 
no changing the 
source code 

   



 

 

 

System Level Benchmarking in Embedded Applications 

Interestingly, EEMBC has remained and will remain a small-kernel derived and 
larger applications benchmarking consortium.   The members, comprised of 
semiconductor (processor) developers as well as compiler companies, find the small-
kernel approach invaluable for isolating strengths and weaknesses, for high fidelity to 
their application focuses, flexibility, and usefulness in processor design.  EEMBC has 
replaced SPEC as the benchmark suite useful in design of embedded processors.  The 
larger, Version 2 applications will tax the higher end of the embedded space (32-bit and 
64-bit, as well as VLIW and DSP processors) and will demand faster processors and 
better architectures. 

However, there is a need in the embedded community for a system-level, platform-based 
set of benchmarks.  These would be quite portable, running across operating systems, 
processor types and varieties, and focused on the very high end embedded applications 
from cellular phones to Personal Digital Assistants (PDA's) to set-top boxes and 
information appliances (internet appliances, thin clients, and so on).  These are all clearly 
embedded, but they are systems - not simply processors.  Desktop PC benchmarks 
might be made to work in this world, but they have historically been stuck in the x86 / PC 
rut (and only available on Microsoft operating systems, which is natural since over 90% of 
PC's are running Microsoft OS's).  Moreover, they don't really measure to a fine enough 
grain the bandwidth issues associated with being wireless, wireline at 56KBps, and cable 
modem/DSL speeds. 

ECL's solution is to work with processor, compiler, RTOS, system-level, and other 
vendors and manufacturers to create a new set of industry-standard, certified, widely 
accepted benchmarks for system-level, platform-based solutions.  An announcement will 
be made shortly, and not surprisingly a number of current EEMBC members will join - but 
not renounce their membership in EEMBC.  As they move up-market, generating more of 
the "solution", these vendors will need ways to benchmark themselves, while also 
benchmarking the individual components (which EEMBC excels at).  Customers, 
moreover, will benefit by understanding the kind of performance they are buying to 
integrate, and then sell to end-users. 

Conclusion and Recommendations 

The economic incentive for ECL would be to find a way to certify Dhrystone 
scores, and to endorse the scores obtained on the MIPS and ARM platforms, 
respectively.  Unfortunately, we can't do that and pretend that Dhrystone won't mislead 
a viewer of such a "certification". It no longer makes sense to use Dhrystone as a 
performance benchmark in the embedded space, or in the PC and server space.   

The author of Dhrystone himself, Dr. Weicker, said it best when he said at an event ECL 
attended, "Dhrystone - why is anyone still using that?"  The answer is that it has, 
historically, been the only thing available.  With the advent of EEMBC, now over 5 years 
old and going stronger than ever, growing in popularity and importance, this is no longer 
true.   It is time to do as Dr. Weicker suggests, and put Dhrystone to bed forever. 

Both ARM, Ltd. and MIPS Technologies wanted this study to be completed, mostly to 
verify for themselves that they are doing Dhrystone right, but they are both moving 
smartly towards using EEMBC scores.  Already ARM has published certified scores on 
the EEMBC website, and MIPS Technologies is in progress.   SuperH, the heir to Hitachi 
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for their high-end processors, has published EEMBC scores.  Motorola found that not 
publishing scores was a recipe for disaster, and in the words of one Motorola manager: 

"We completely underestimated how important EEMBC scores are.  We should 
have done this a long time ago."  
Chuck Corley, Applications Manager, PowerPC 
Motorola, Inc. 
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