
.

. .

Dhrystone Benchmark

History, Analysis, "Scores"
and Recommendations

 White Paper

Alan R. Weiss

October 1, 2002

 ECL, LLC
6507 Jester Blvd 2222 Francisco Drive
Suite 511 Suite 510-203
Austin, Texas 78750 El Dorado Hills, California 95762
Inquiry@ebenchmarks.com http://www.ebenchmarks.com
 512-219-0302

Rae Morrow
.

.

. .

Dhrystone Benchmark

Introduction and Disclosure

The EEMBC Certification Laboratories, LLC (ECL) is recognized as the premier
benchmarking and certification laboratory1 in the semiconductor and software industries,
and is the authorized certification body for EEMBC. EEMBC (pronounced "embassy") is
the industry-standard processor benchmark consortium, and was setup to create reliable
application-based benchmarks to measure processor (and compiler) performance.

Despite the growing adoption of EEMBC benchmarks, the Dhrystone benchmark is still
misused in the industry. To help people and companies evaluate its usefulness, we
decided to analyze Dhrystone for strengths and weaknesses and explain our findings
based on real examples. This White Paper will first explain what "benchmarking" is, how
it is used, and offer a set of intended uses. Then, we will explain Dhrystone, exploring its
creation and evolution and intended purpose. From there, we dive into the technical
details of Dhrystone, explaining how it works and what it measures. We then try and distill
a reasonable set of run-rules consistent with its creator's intent, report some interesting
scores, and then explore how Dhrystone is being used - and misused - by many in the
industry. Finally, we compare and contrast Dhrystone with EEMBC's industry-standard
benchmarks

Benchmarking: Definition and Purpose

Benchmarking is a method of measuring performance against a standard, or given
set of standards.

Standards come about in two ways:

• Common usage over time (i.e. "the standard against one measures")

• Purposeful creation by one or more people

A useful way to characterize benchmarks is whether they are synthetic, or application
("real world") based. A synthetic benchmark is created with the intent to measure one or
more features of a system, processor, or compiler. Synthetic benchmarks may try to
mimic instruction mixes in real world applications, or they may be artificial. Synthetic
benchmarks are useful in debugging specific features, but they cannot be easily related
to how that feature will perform in an application. Because they are useful in debugging
or isolating specific functionality, synthetic benchmarks tend to be small, though this is
not a requirement.

1 ECL defines Certification as the process of re-creating the benchmarking environment, verifying the
processor and memory bus clock speed, verifying the compiler switches, re-creating the scores, re-
building the code to ensure scores are re-creatable, and so on. ECL has over 50 separate steps in its
benchmark score certification process.

.

Application benchmarks, also called "real world" benchmarks, use system- or user-level
software code drawn from real algorithms or full applications Application benchmarks
are more common in system-level benchmarking and usually have large code and data
storage requirements.

A third type of benchmarks, called derived benchmarks (or "algorithm-based
benchmarks") is a compromise between synthetic and application. As their name
implies, derived benchmarks are created by extracting the key algorithms (software code)
and generating realistic data sets from real world applications. This avoids the need to
execute an entire application, and the benchmark can be used both for debugging,
internal engineering, and for competitive analysis. Derived benchmarks, based on real
application code, represent the best of both worlds and are perfectly suited for embedded
environments.

What is Dhrystone? Definition, Historical Perspectives, Evolution

Dhrystone is an odd name to the uninitiated. Created in 1984 by Dr. Reinhold P.
Weicker, then of Siemens AG, its intention was to measure the performance of computer
systems, not embedded processors. Because of the nature of computer systems of that
era, Weicker focused on integer performance. As the Whetstone benchmark for floating-
point code already existed, Weicker chose the name Dhrystone as its logical counterpart
in the integer world. The current version of Dhrystone, Version 2.1 was created in 1988,
and remains in its original format today.

Weicker wrote Dhrystone to model what was then viewed as a "typical" application mix of
mathematical and other operations. Integer performance predominated, with little or no
floating-point calculations, and applications could be contained inside small memory
subsystems. Throughout Dhrystone’s long history, the benchmark has had to face the
following revolutions and evolutions that have changed computer architectures.
Unfortunately, Dhrystone doesn't take into account any of the following:

• Reduced Instruction Set Computing (RISC)

• Availability of sophisticated floating point processor units inside main processors

• Single instruction, multiple data (SIMD) vector processors inside the main
processors

• Superscalar RISC designs (multiple execution units inside a single processor)

• Very Long Instruction Word (VLIW) processors

• Optimizing compilers

• Large memory subsystems, including processors and systems with L1, L2, and
L3 caches

• Real-time operating systems with sophisticated application programming
interfaces (API's), multitasking, TCP/IP functionality, and graphical user
interfaces

• Large real-time, embedded applications proliferating into practically every area of
modern life

• Graphics, multimedia, and communications-intensive applications

Throughout this white paper, it is very important to note Dr. Weicker’s long-standing
sentiment about his creation:

"Although the Dhrystone benchmark that I published in 1984 was useful at the
time," said Weicker, "it cannot claim to be useful for modern workloads and
CPUs because it is so short, it fits in on-chip caches, and fails to stress the
memory system. Also, because it is so short and does not read from an input file,
special compiler optimizations can benefit Dhrystone performance more than
normal program performance. In embedded computing, EEMBC
(www.eembc.org) is collecting larger real-life embedded-computing programs
as the basis for benchmarks." Dr. Reinhold P. Weicker, Siemens AG, Vice
Chairman of the Spec Open Systems Steering Committee.
http://www.einsite.net/ednmag/index.asp?layout=article&articleId=CA46261&
st EDN Magazine 10 / 28 / 1999

Dr. Weicker has long ago gone on to bigger and better things. An important
computer scientist, renowned in benchmarking and performance analysis, Weicker has
been involved with the SPEC organization (http://www.specbench.org), recognizing the
inherent weaknesses endemic with Dhrystone.

Technical Characteristics of Dhrystone

The following table provides a concise summary of Dhrystone’s characteristics and
corresponding strength or weakness:

Characteristic Strength and/Weakness

Written in C
language code

Strength: Allows code to be ported to a
large number of platforms and architectures.

Very small size Strength: An engineer can quickly master
Dhrystone.

Weakness: A compiler writer, or architect,
can quickly defeat Dhrystone and "design to
a benchmark."

Weakness: Minimizes or eliminates stress
on memory subsystems and easily fits
inside L1 caches.

Weakness: Cannot hope to mimic the
breadth of applications encountered by a
processor-based system.

Weakness: Is based on a single
benchmark comprised of three files:
dhry_1.c, dhry_2.c, and dhry.h. There is
only one set of functions.

Single, easy-to-
report score

Strength: Reported as a single figure of
merit, similar to the ‘marks’ used by
EEMBC, has allowed it to gain industry
traction. Dhrystone is formally reported as

.

traction. Dhrystone is formally reported as
"Dhrystone 2.1 MIPS".

Weakness: Dhrystone users employ
confusing and ambiguous terminology such
as DMIPS, DMIPS/MHz, Rounded
Dhrystones/second, and Dhrystones/ CPU
cycle. Furthermore, a "MIP" is actually 1.75
DEC VAX MIPS.

Synthetic Weakness: Dhrystone only measures a few
mathematical and basic operations.

Integer only
code

Strength: This makes it potentially useful
for simple 8- and 16-bit microcontrollers,
assuming people don't care about relating
anything to real world applications.

Weakness: Does not measure multiply-
accumulate, floating-point, SIMD, or any
other type of operations.

Library-
dependent
performance

Weakness: Dhrystone’s execution is
largely spent in standard C library functions,
such as strcmp(),strcpy(), and
memcpy(). Compiler vendors generally
provide these libraries that are typically
optimized and hand-written in assembly
language. While you may think you are
benchmarking a processor, you are really
benchmarking are the compiler writer’s
optimizations of the C library functions for a
particular platform.

No Evolution Weakness: Compiler writers have long ago
determined Dhrystone’s functionality. The
secret to good benchmarks, as SPEC and
EEMBC have shown, is to stay ahead of the
compiler writers to ensure that the
processor and system is benchmarked, not
just the compiler.

No Third-Party
Certification

Weakness: Dhrystone’s lack of an official
certification process (as defined in Footnote
#1) has eliminated this benchmark’s
credibility. Certification can only come from
inherent value, and there is very little value
in Dhrystone to modern processors or
compilers.

No Source
Control

Weakness: Dhrystone is available from
multiple sources, and while most companies
attempt to use Weicker's original source,
some servers have "gone dark" as the age
of the Web increases. There is great
potential that a company, or an individual,
has modified the code to its advantage.

has modified the code to its advantage.
Some companies report Dhrystone 1.1
scores - an even older version of the code.

No Standard
Run Rules

Weakness:. Due to the lack of a standards
organization, Dhrystone’s original runtime
rules have eroded into a state of confusion,
thereby turning it into a performance
measurement that is easily circumvented.

No Disclosure
of Benchmark
Environment

Weakness: The benchmarking
environment, including processor and
memory clock speed, compiler switches,
and libraries, are not disclosed nor required.

Inlining or
excessive
compiler
optimization
destroys the
benchmark

Weakness. Instructing the compiler to
inline the code, greatly increasing the
benchmark's susceptibility to code
elimination, typically breaks Dhrystone's
apocryphal "rules". The benchmark
essentially vanishes and scores get
unrealistically good.

Dhrystone Scores: Real World Examples

One of the most important defects in Dhrystone is that it is often unclear what version
is being quoted. Furthermore, since there are no "disclosure rules" or independent
certification of scores, companies and individuals are free to state, or not state, anything.

For example some companies might publish a score for Dhrystone 1.1 running on its
latest processor core. Dhrystone 1.1 has been obsolete for many years and Dhrystone
1.1 scores are not comparable to Dhrystone 2.1 scores (the current version). But
because there is no industry-standard group to manage the process and rules, and
ensure a common code base, there is no consistency between vendors.

Dhrystone Areas of Optimization – Distilled Run Rules

As Table 1 indicated, Dhrystone is subject to various weaknesses that companies
exploit. ECL studied the Dhrystone “rules” as envisioned and published by Dr. Reinhold
Weicker to determine if some representative companies have violated the rules.

1. You may not re-write or change the code inside the main “timing loop” – that is,
the timed portion of the C source code must not be changed. Subtle changes
can influence, sometimes dramatically, the scheduling of certain instructions.
Compilers are pattern matchers – if you change the code so that your compiler
can isolate Dhrystone’s peculiar code pattern, the compiler can select a
Dhrystone-optimized code template. Unfortunately, this has limited applicability
to real application code.

2. No Inlining Allowed. While you can link in standard C libraries, and indeed you
can inline those, you cannot globally inline the Dhrystone code. Unbeknownst to
the programmer, some compilers may ignore a directive not to inline, potentially
making it necessary to dump code to assembly language to verify what has
occurred.

.

3. Separate compilation. Dhrystone tried to mimic how real programs are written
linking separate modules together. This reflects 1970’s style "structured
programming" techniques that are still used today. Dhrystone’s two C source
files and header file must not be combined and compiled as one step. That
there are only two C source files means this is not a very difficult barrier for most
compilers (and compiler writers, having extensively studied Dhrystone, don't find
this terribly "real-world").

4. Because Dhrystone scores are so heavily dependent upon C language functions
that copy and compare strings (called strcmp() and strcpy()), Dhrystone
rules allow compilers or assembly programmers to optimize these functions. In
fact, most “smart” compilers have these library functions written in assembly
language. Another trick is to optimize strcpy() by making alignment and
fixed-length assumptions for the input strings, but in no case can these functions
be optimized in a Dhrystone-specific manner (such as assuming the content,
positioning, or length of the strings). In point of fact, this "processor benchmark"
can spend between 10% and 20% of its time in these functions!

5. You cannot use post-processing tools (after linkage) to optimize. These illegal
optimizations typically fall under the heading of feedback-directed optimizations,
and are particularly handy when used with an architecture that has branch
prediction and speculative execution

To understand how different vendors use the Dhrystone benchmark ECL measured
Dhrystone on cores from ARM Ltd and MIPS Technologies, two leaders in the
embedded-processor industry. Both companies cooperated fully with ECL and provided
all necessary tools and support.

Analysis of MIPS Code and Score

MIPS Technologies did not violate the Distilled Dhrystone Run Rules. MIPS
Technologies did not inline the code, although the compiler does align the data along 64
bit boundaries.

ECL was able to re-create MIPS benchmark environment and obtain exactly the same
scores. We hand inspected the source code MIPS provided us, and found that MIPS did
not change the code inside the timing loop of Dhrystone, and in porting MIPS did nothing
to alter the code.

MIPS used an interesting bit of magic they Gideon's Algorithm. For strcmp(), it reads
the natural word and compares that to the first word in the string compare. If it gets a
match, it assumes that there is a word alignment, and then it picks up the next word, and
so on until there is a word that is not aligned along the natural word boundary. Then, of
course, it must compare byte by byte. This saves a bit of time, naturally, and accounts
for some of the performance differences between MIPS and ARM.

ECL measured Dhrystone on the 5kc core, a single-issue 64-bit processor with an
integrated multiply-divide unit. The compiler schedules divisions for this unit and this
results in some score improvement. To compare and distill the effect of this multiply-
divide unit, we used two additional compilers to see if they supported this feature. The
Wind River Diab Data C compiler emitted highly optimized code that showed the
architecture to full advantage, including aligning data along natural word (64 bit)
boundaries. Another MIPS compiler vendor was less aggressive, and this points out that
compiler selection matters - sometimes as much as 10-40%! However, using
Dhrystone as a benchmark for compilers is flawed - there simply aren't enough different

kinds of instructions in Dhrystone, and as we have seen libraries matter a great deal
more than they should.

The 5kc's inclusion of the multiply-divide unit also proves a point about comparing
seemingly similar architectures. The ARM 1026-EJS and the MIPS 5kc at first blush
appear very similar: both are single-issue machines with similar L1 cache sizes, and so
on. The MIPS part is a 64-bit part, and the ARM part is a 32-bit part, but architecturally
they are more similar than dissimilar. The multiply-divide, when utilized with suitable
instructions from the instruction-set architecture, gives the 5kc a slight performance
boost, and so does the effect of the 64-bit fetches.

Note, however, a nearly fatal flaw with using Dhrystone as an embedded benchmark:
nowhere is code and data size documented and reported, and nowhere is there a
disclosure about the number of gates (transistors, die-size area) required by the
processor. In the embedded world, often memory is the most expensive part of a design.
Memory requirements have a significant effect on system cost and power consumption.

5kc processor,

40 MHz, TSMC process

Column 2

MIPS 32 Bit 5kc using 5kc
binaries

Column 3

MIPS 32 Bit 5kc using 4kc
binaries

Dhrystones per second 92889.03451 87697.20141

Dhrystones / MHz 1.321666368 1.247794665

Rounded Dhrystones /
MHz

1.37 1.25

MIPS 5kc Dhrystone scores, 40 MHz TSMC process part

Table 2 shows a number of performance metrics based on Dhrystone. Column 1
consists of the typical Dhrystone metrics and other derived calculations. Most scores are
reported as Dhrystone MIPS/megahertz (abbreviated as DMIPS/MHz) and/or as VAX
Dhrystone MIPS (sometimes just called DMIPS).

The number of loops we ran Dhrystone through (in this case, 20,000) had little effect,
indicating another Dhrystone weakness: it’s small size allows it to easily fit inside
small L1 caches, therefore, after a few thousand loops the score is constant and
scales linearly for clock speed. When we increased the loops to 50,000, it had no
effect - nor when we decreased it to 5000 loops.

Column 2 indicates that the Dhrystone code was compiled for 64 bits, which is the native
word size of the MIPS 5kc. As can be seen by the resulting DMIPS score of 1374 and a
rounded DMIPS/MHz score of 1.37, this option gave the best results. We believe that
taking advantage of 64 bits had a significant effect on performance.

Column 3 indicates the effects of emitting 32-bit code for the 5kc, resulting in a noticeable
negative effect on performance. We generated this by compiling for the MIPS
Technologies’ 32-bit 4kc core, a different processor, and running the ensuing binary on
the 5kc. This procedure validated MIPS Technologies' claim of code compatibility
between processors. Performance suffered noticeably with the strcmp() function for
the 4KC, though, because comparing 32 bit words takes longer than comparing 64
bit words when the strings are the same size.

.

Analysis of ARM Code and Score

ARM did not violate the Distilled Dhrystone Run Rules. ECL investigated the ARM
1026EJ-S scores using a simulator, as a board with this processor on it was not available
at the time of this study.

Previously, we had verified on the ARM and MIPS platforms that using an RTL simulator
with Dhrystone was practical from a time perspective, since the benchmark easily fits
inside small L1 caches. We were suspicious of everything (being a certification
laboratory, it’s an occupational hazard), so we investigated everything that went into the
set-up of the environment.

ECL was able to re-create ARM’s benchmark environment and obtain exactly the same
scores. We hand inspected the source code ARM provided us, and found that ARM did
not change the code inside the timing loop of Dhrystone, and in porting ARM did nothing
to alter the code. ARM ran "out of the box", except for allowed modifications to the
printf() functionality to accommodate its particular environment (MIPS Technologies
did the same).

The ARM10 architecture is 32 bits, not 64 bits, and lacks a multiply-divide unit. A single-
issue machine with cache sizes similar to the MIPS 5kc, the Dhrystone benchmark
doesn’t measure the performance, power, and code size attributes of any processor.
Dhrystone score reporting does not require the inclusion of code and data sizes, and
nowhere is there a disclosure about the number of gates (transistors, die-size area) used.
Further, this processor includes Jazelle, ARM's Java execution functionality. Dhrystone,
of course, doesn't exercise any of that functionality. How could it? When it was written,
the word "Java" only meant an island of Indonesia, or a variety of coffee. The world has
changed since Dhrystone was written - but it has not.

ECL had to manually calculate ARM’s scores since the RTL simulator only produces a
cycle count. After running the benchmark for 25 iterations, the system accumulated
11071 cycles. Similarly, after 24 iterations, the system accumulated 10649 cycles.
Subtracting the two cycle counts, we derived that 422 cycles are used to run one
Dhrystone loop. To calculate Dhrystone MIPS / MHz:

11071 - 10649 = 422 cycles

1 / (422 cycles * 0.001757) = 1.3487 DMIPS/MHz

The ARM processor has a 16-bit instruction mode called Thumb, which ECL did not try to
use. Remember, 1 million instructions per second is not the same as a Dhrystone MIP -
a VAX VMS 11/1750 actually ran at 1757 DMIPS, and hence the adjustment in the
equation.

 In Table 3, we round off and compare the results from the ARM 1026EJ-S and the MIPS
Technologies 5Kc on that basis.

 MIPS
5KC

ARM 1026-
EJS

Dhrystones / MHz 1.37 1.35

This data indicates that these processors, per MHz, are practically identical - if all you
consider is Dhrystone. As we have seen, this comparison condemns you with a
misguided view of the capabilities of each processor.

Dhrystone Fragility: How to Win At Dhrystone The Easy Way

Like all modern computer processor architectures, and the benchmarks that run
on them, the concept of "architecture" includes "processor, memory, and
compiler." But if you wanted to cheat or win at Dhrystone, here is how you would do it
(and many people do exactly this!):

1. Run Dhrystone 1.1, or 2.0, instead of 2.1 - and don’t mention the version
number.

2. Build special purpose libraries, in assembler, that specifically targets the strings
in Dhrystone.

3. Inline the code. If you wanted to be clever about this, have the compiler inline
the code, even if you tell it not to. Talk about an "optimizing compiler!"

4. Build a processor that is very good at integer and string functions, has a small L1
cache, has no floating point, Java, SIMD, special-purpose hardware, peripherals.

5. Build a compiler that recognizes the Dhrystone source code (it hasn't changed
since 1984, so that shouldn't be too difficult) and just emit the right answer -
without doing all those nasty little loops.

.

A Solution is Found: EEMBC and its Benchmarks

In the 1990s, the new innovations in hardware architecture drove a need for benchmarks
based on real applications. RISC became embedded. VLIW became more practical
using advanced compiler technology. SIMD moved down from mainframe and
supercomputer processors into microprocessors (i.e. MMX, SSE, AltiVec).

If your company is Cisco, 3COM, Nokia, Motorola, Visteon, Delphi, Lexmark, or another
large buyer of embedded processors - how do you determine how much processing
performance to purchase? If you buy too much performance, your design will run too hot
and will consume too much energy (a key factor in portable consumer electronics is
battery life), and will cost too much. If you buy too little performance, your design will
flounder under stress and full loads, and have no headroom for expansion.

EEMBC, the Embedded Microprocessor Benchmark Consortium, was formed for a
number of reasons. EEMBC's goal was to bring real-world, application-based
benchmarks to the world. Since one application wouldn't be sufficient, the EEMBC 1.0
code specifies over 35 separate benchmark kernels, divided into 5 application spaces:

• Automotive/Industrial

• Consumer

• Networking

• Office Automation

• Telecommunications

The Mission Statement for EEMBC is:

"EEMBC will work collaboratively to develop a suite of performance benchmarks that will
target key applications of embedded systems. These benchmarks will help provide
customers an objective means of evaluating processors and controllers."
A problem can occur so long as there is no independent third-party certification, and a
canonical benchmark score repository does not exist. EEMBC solves those problems.
All scores are available on the EEMBC website, for free. Dhrystone has no such
certification, and no canonical main repository of scores exists.

Currently EEMBC has over 180 scores available for free on its website, and has gained a
huge amount of support over the years. In 2002 alone, ARC, ARM, Improv Systems,
Infineon, Motorola, NEC, SuperH, Tensilica, and Toshiba have published certified scores,
with more on the way. Each score has full-disclosure of the environment including the
compiler and switch settings. ECL has re-created each score and passed a set of 50
checks to assure that the scores are trustworthy. Furthermore, each score has the
associated code and data sizes.

Most importantly, EEMBC is an open process and consortium for members to resolve
disputes, express opinions, vote, and include new benchmarks into new versions. It is
not static - it moves as the industry moves.

EEMBC 2.0 adds:

• 8/16 Bit Microcontroller Benchmarks (an entire suite)

• Java Benchmarks (an entire suite)

• MP3

• MPEG-2 Decode and MPEG-2 Encode

• MPEG-4 Decode

• Voice Over Internet Protocol (VoIP)

• Additional Networking benchmarks

• Cryptography benchmarks

• Ghostscript

A comparison of EEMBC vs. Dhrystone shows the following:

Attribute EEMBC Dhrystone

Written in C
language code

Yes - All code is in
ANSI C, except the
Java Benchmark Suite

Yes - but it is NOT in
ANSI C

Very small size No - both small and
larger kernels and
benchmarks - a mixture

Yes - tiny, two .C
files

Single, easy-to-
report score

Yes - there are
aggregates such as
AutoMark or TeleMark.

Yes - DMIPS

Multiple kernels /
benchmarks

Yes - 35 in Version 1.0,
another two-dozen
coming in Version 2

No

Synthetic No – based on
application algorithms
based

Yes - completely

Related to a real-
world machine
score

No - no need, since
over 100 scores
available

Yes - based on
ancient VAX 11/750

Integer only code No - mostly integer, but
some floating point, and
much that can be re-
written for "full-fury" in
assembler, SIMD, etc.
Good mixture

Yes

Performance too
dependent upon
libraries

No - profiling suggests
that good libraries help,
but bad libraries do not
hurt as much as with
Dhrystone

Yes - terribly
sensitive to string
functions

.

Dhrystone

Evolution Yes - EEMBC 1.0 in
1998, 1.1 in 2002, and
soon EEMBC 2.0 in
2003

Not since 1988

Third-Party
Certification

Yes - EEMBC
Certification
Laboratories,
independent, non-
biased, fair

No

Source Control Yes - strong. All code is
available to EEMBC
members, backed up by
ECL using CVS and
source management. A
"correct version" always
exists

No

Standard Run
Rules

Yes - extremely strict,
but there is a Fully Fury
(optimized) and an Out
of the Box set (don't
touch the code).

Yes - but open to
interpretation, and
the lack of
certification means
some companies
can cheat

Disclosure Forms
Required

Yes - and the
disclosures themselves
have to be certified

No

Significant Figure
of Merit Varies

No No

Repository of
Official Scores

Yes:
http://www.eembc.org

No. Past Usenet
repositories are
years out of date.

Inlining or
Excessive Compiler
Optimization
destroys the
benchmark

No Yes

Full Fury Mode Yes - allows any
optimization as long as
you get the right
answer. Helps highlight
peripheral performance,
and what the theoretical
maximum performance
of a part would be like

No - Run Rules state
no changing the
source code

System Level Benchmarking in Embedded Applications

Interestingly, EEMBC has remained and will remain a small-kernel derived and
larger applications benchmarking consortium. The members, comprised of
semiconductor (processor) developers as well as compiler companies, find the small-
kernel approach invaluable for isolating strengths and weaknesses, for high fidelity to
their application focuses, flexibility, and usefulness in processor design. EEMBC has
replaced SPEC as the benchmark suite useful in design of embedded processors. The
larger, Version 2 applications will tax the higher end of the embedded space (32-bit and
64-bit, as well as VLIW and DSP processors) and will demand faster processors and
better architectures.

However, there is a need in the embedded community for a system-level, platform-based
set of benchmarks. These would be quite portable, running across operating systems,
processor types and varieties, and focused on the very high end embedded applications
from cellular phones to Personal Digital Assistants (PDA's) to set-top boxes and
information appliances (internet appliances, thin clients, and so on). These are all clearly
embedded, but they are systems - not simply processors. Desktop PC benchmarks
might be made to work in this world, but they have historically been stuck in the x86 / PC
rut (and only available on Microsoft operating systems, which is natural since over 90% of
PC's are running Microsoft OS's). Moreover, they don't really measure to a fine enough
grain the bandwidth issues associated with being wireless, wireline at 56KBps, and cable
modem/DSL speeds.

ECL's solution is to work with processor, compiler, RTOS, system-level, and other
vendors and manufacturers to create a new set of industry-standard, certified, widely
accepted benchmarks for system-level, platform-based solutions. An announcement will
be made shortly, and not surprisingly a number of current EEMBC members will join - but
not renounce their membership in EEMBC. As they move up-market, generating more of
the "solution", these vendors will need ways to benchmark themselves, while also
benchmarking the individual components (which EEMBC excels at). Customers,
moreover, will benefit by understanding the kind of performance they are buying to
integrate, and then sell to end-users.

Conclusion and Recommendations

The economic incentive for ECL would be to find a way to certify Dhrystone
scores, and to endorse the scores obtained on the MIPS and ARM platforms,
respectively. Unfortunately, we can't do that and pretend that Dhrystone won't mislead
a viewer of such a "certification". It no longer makes sense to use Dhrystone as a
performance benchmark in the embedded space, or in the PC and server space.

The author of Dhrystone himself, Dr. Weicker, said it best when he said at an event ECL
attended, "Dhrystone - why is anyone still using that?" The answer is that it has,
historically, been the only thing available. With the advent of EEMBC, now over 5 years
old and going stronger than ever, growing in popularity and importance, this is no longer
true. It is time to do as Dr. Weicker suggests, and put Dhrystone to bed forever.

Both ARM, Ltd. and MIPS Technologies wanted this study to be completed, mostly to
verify for themselves that they are doing Dhrystone right, but they are both moving
smartly towards using EEMBC scores. Already ARM has published certified scores on
the EEMBC website, and MIPS Technologies is in progress. SuperH, the heir to Hitachi

.

for their high-end processors, has published EEMBC scores. Motorola found that not
publishing scores was a recipe for disaster, and in the words of one Motorola manager:

"We completely underestimated how important EEMBC scores are. We should
have done this a long time ago."
Chuck Corley, Applications Manager, PowerPC
Motorola, Inc.

Bibliography

[1] Dhrystone Benchmark: Rationale for Version 2 and Measurement Rules published in
SIGPLAN Notices 23,8 (Aug. 1988), 49-62]
[2] Understanding Variations in Dhrystone Performance, Reinhold P. Weicker, Siemens AG,
AUT E 51, Erlangen, April 1989

Member List

Subcommittee Chairs

Subcommittee Chair
Automotive/Industrial: Manfred Choutka, Infineon

Consumer: Sergei Larin: Motorola
Java: Rod Crawford, ARM, Inc

8-/16-Bit Microcontrollers: David Lamar, NEC Electronics
Networking: Bill Bryant, Sun Microsystems

Office Automation: Ron Olson, IBM
Telecomm: Gil Naveh, StarCore

Member List

Benchmark Scores

Member
Member

Since
Board or

Subcommittee
Production

Silicon
Simulators
Emulators

3DSP Oct 1999 Telecomm
Altera Corp Apr 2000 Board
AMD Nov 2002 Board yes
Analog Devices, Inc Mar 2003 Board yes
ARC International Jun 1998 Board yes
ARM, Inc May 1997 Board yes
DCT Jul 2003 Java
esmertec Dec 2002 Java
Fujitsu Microelectronics Jul 1997 Board
Green Hills Software Apr 1999 Third-Party Tools
IAR Systems AB Jun 2002 Third-Party Tools
IBM May 1997 Board yes yes
Imagination Technologies Nov 2002 Consumer
Infineon Technologies May 1997 Board yes yes
Intel Jan 1999 Board
Intrinsity, Inc Mar 2001 Board yes
LSI Logic Jun 1999 Board yes yes
Matsushita Electric Industrial Dec 1997 Consumer,

Telecomm

Mentor Graphics Nov 2002 Third-Party Tools
Metaware Jun 2000 Third-Party Tools

Benchmark Scores

Member
Member

Since
Board or

Subcommittee
Production

Silicon
Simulators
Emulators

MetroWerks May 1999 Third-Party Tools
MIPS Technologies May 1997 Board yes yes
Motorola May 1997 Board yes
National Semiconductor May 1997 Board yes
NEC Electronics May 1997 Board yes
Oki Electric Industry Co., Ltd Nov 2000 Board
ParthusCeva Aug 1999 Board
Philips Semiconductors Jul 1997 Board
PMC-Sierra May 1997 Board yes
Precise Software Technologies Nov 2000 Third-Party Tools
Red Hat Apr 2001 Third-Party Tools
Renesas Technology Corp. May 1997 Board
Samsung Electronics Nov 2002 Board
Sandbridge Technologies Aug 2001 Telecomm
Sony Computer Entertainment Nov 2002 Board
ST Microelectronics May 1997 Board yes
StarCore, LLC Dec 1997 Board
Sun Microsystems May 1997 Board
SuperH, Inc. Mar 2002 Board yes
Symbian Ltd Jul 2002 Java
Tao Group Ltd Jun 2002 Java
Tensilica Feb 1999 Board yes
Texas Instruments May 1997 Board yes
Toshiba May 1997 Board yes
Transmeta Corporation Oct 2003 Board
VIA Technologies Mar 2003 Board
Wind River Systems Nov 1999 Third-Party Tools yes
Xilinx Oct 2001 Networking

