
 
MONTHLY

JOURNAL OF 

INFORMATION TechTimes
M O N T H  

Y E A R  

00 Parkhurst  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.eembc.org

MULTIBENCH
ALGORITHMS

AND 
WORKLOAD 
DATASHEETS



 

 MultiBench Algorithms and Workload Datasheets Page 1 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

TABLE OF CONTENTS 
Introduction .................................................................................................... 2 
Workload Organization .................................................................................. 3 
MultiBench 1.0e: The Official Release Version ............................................ 4 

MultiMark ................................................................................................................................................ 4 
ParallelMark ............................................................................................................................................ 5 
MixMark .................................................................................................................................................. 5 

MultiBench Architect ..................................................................................... 7 
MultiBench Algorithms ................................................................................. 8 

Consumer: MD5 ...................................................................................................................................... 9 
Consumer: H.264 ................................................................................................................................... 10 
General: iDCT ....................................................................................................................................... 11 
Office Automation: RGB to CMYK Conversion.................................................................................. 12 
Image Rotation ...................................................................................................................................... 14 
Networking - IP Packet Check .............................................................................................................. 15 
Networking - IP Reassembly ................................................................................................................. 17 
Networking - Transmission Control Protocol (TCP) ............................................................................ 18 

Workload Descriptions ................................................................................ 20 
ippktcheck-4M ....................................................................................................................................... 20 
ipres-4M Variations ............................................................................................................................... 21 
4M-check-reassembly ............................................................................................................................ 22 
4M-tcp-mixed ........................................................................................................................................ 23 
4M-check-reassembly-tcp ..................................................................................................................... 24 
4M-cmykw2 ........................................................................................................................................... 25 
4M-rotatew2 .......................................................................................................................................... 26 
4M-cmykw2-rotatew2 ........................................................................................................................... 27 
4M-check-reassembly-tcp-cmykw2-rotatew2 ....................................................................................... 28 
x264-4M Variations ............................................................................................................................... 30 
4M-check-reassembly-tcp-x264w2 ....................................................................................................... 31 
ippktcheck-64M Variations ................................................................................................................... 33 
64M-check-reassembly .......................................................................................................................... 34 
64M-check-reassembly-tcp ................................................................................................................... 35 
64M-cmykw2 ......................................................................................................................................... 36 
64M-rotatew2 ........................................................................................................................................ 37 
64M-cmykw2-rotatew2 ......................................................................................................................... 38 
64M-check-reassembly-tcp-cmykw2-rotatew2 ..................................................................................... 39 
64M-x264 Variations ............................................................................................................................. 41 
64M-check-reassembly-tcp-h264w2 ..................................................................................................... 43 
iDCT-4M Variations.............................................................................................................................. 45 
ipres-72M ............................................................................................................................................... 46 
md5-32M Variations.............................................................................................................................. 47 
md5-4M Variations ................................................................................................................................ 48 
rgbcmyk-4M Variations ........................................................................................................................ 49 
rgbcmyk-5x12M Variations .................................................................................................................. 50 
rotate-16x4Ms1 Variations .................................................................................................................... 51 
rotate-16x4Ms32 Variations .................................................................................................................. 52 
rotate-16x4Ms4 Variations .................................................................................................................... 53 
rotate-16x4Ms64 Variations .................................................................................................................. 54 
rotate-34kx128w1 .................................................................................................................................. 55 
rotate-34kx512-90deg ............................................................................................................................ 56 
rotate-4Msx Variations .......................................................................................................................... 56 
rotate-color-4M-90deg Variations ......................................................................................................... 59 
rotate-color1Mp Variations ................................................................................................................... 59 

 

  



 

 MultiBench Algorithms and Workload Datasheets Page 2 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Introduction 

EEMBC is synonymous with industry-standard benchmarks. This consortium first started 
developing embedded processor benchmarks in 1997. These benchmarks serve as a tool for 
evaluating embedded processors, compilers, and systems, and help to predict performance in 
real-world applications. 

Evolving with the times, EEMBC has produced a comprehensive suite of benchmarks to 
help you evaluate the performance of scalable SMP architectures employed within 
embedded multicore platforms. These benchmarks, called MultiBench, allow you to test: 

• Scalability where contexts exceed resources 
• Single core versus multiprocessor/multicore 
• Memory and I/O bandwidth 
• OS scheduling support 
• Efficiency of synchronization 
• Compiler benchmarking 

The key element of MultiBench is the unique Multi-Instance Test Harness (MITH) that 
provides an abstraction layer to support portability of the benchmarks across an infinite 
number of platforms. MITH makes it easy to run on any platform, operating system, and 
tool-chain. 

MultiBench is also comprised of a wide-variety of application-focused workloads 
encompassing the networking, consumer, and office automation domains. Regardless of the 
application-specific focus of these workloads, their flexibility makes them applicable to a 
whole host of other applications. And if that’s not enough flexibility, EEMBC’s MultiBench 
Architect allows you to compose custom workloads for testing specific system 
characteristics. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 3 of 65 

Workload Organization 
The standard MultiBench distribution includes algorithms/kernels and workloads that 
primarily encompass three application areas, including networking, consumer, and office 
automation. The table below shows the general distribution of these workloads. 

NOTE: All three application areas must be used to obtain the MultiBench ‘marks’ described 
in the following section. 

 

1. Part of official release, all other workloads are beta versions and included at no extra charge. 
2. Requires (and included with) purchase of both Networking and Consumer workloads. 
3. Requires (and included with) purchase of Networking and Office Automation workloads. 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 



 

 MultiBench Algorithms and Workload Datasheets Page 4 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

MultiBench 1.0e: The Official Release Version 

EEMBC has created an official release version of MultiBench that will be supported for all 
certifications. When running these workloads, the user may change the number of work 
items running in parallel, as well as the affinity of each instance of the work item, to take 
advantage of available computing resources in the target platform. Datasets for the 
workloads contained in version 1.0e have been chosen to limit the working set size to 
4Mbytes per context. 

MultiBench 1.0e, which contains 18 specific workloads, automatically yields a consolidated 
score for a given platform, thereby generating several different ‘marks’ that can be used to 
readily analyze a platform’s multicore performance. In general, each mark is based on two 
figures of merit derived from each workload: 

1. Best Throughput Factor- defined in iterations per second, each platform will execute 
a workload a specific number of times per second. The best configuration is 
platform dependent. 

2. Performance Scaling Factor- this concept defines how well performance scales when 
more computing resources are brought to bear on the workload. There are several 
ways of utilizing computing resources in parallel, and MultiBench 1.0e workloads 
with the MultiBench framework test most of them (the exception being functional 
decomposition, which will be addressed in the next version of MultiBench). By 
limiting the available resources to only execute one work item at a time, and 
comparing the throughput to the best throughput for the workload, we gain an 
insight into how well the platform scales for that workload. 

NOTE: All three application areas (Consumer, Networking, and OA) must be used to obtain 
the MultiBench ‘marks’. 

MultiMark 
This mark consolidates the best throughput using workloads with only one work item, each 
of which uses only one worker. The calculated throughput factor is 10 times the geometric 
mean of the iterations per second achieved with the best configuration for each workload 
(Note: 10 is a multiplication factor). Each work item is using only one worker, and multiple 
copies of the task can be performed in parallel to take advantage of concurrent hardware 
resources. 

The workloads for this mark are: 

1. <rgbcmyk-4Mw1> 
2. <ipres-4Mw1> 
3. <ippktcheck-4Mw1> 
4. <md5-4Mw1> 
5. <rotate-4Ms1w1> 
6. <rotate-4Ms64w1> 
7. <x264-4Mqw1> 
8. <iDCT-4Mw1> 
 

MultiMark = 10*geomean(geomean(5,6),1,2,3,4,7,8) 

NOTE: Several rotate workloads are included for the MultiMark, the final calculation takes 
a geomean of the rotate* workloads (to use it as one item for the mark). 



 

 MultiBench Algorithms and Workload Datasheets Page 5 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

ParallelMark 
This mark consolidates the best throughput of workloads with only one work item that each 
use multiple workers. The calculated throughput factor is 10 times the geometric mean of the 
iterations per second achieved with the best configuration for each workload (Note: 10 is a 
multiplication factor). Only one work item may be executed at a time, and multiple workers 
may be used to take advantage of concurrent hardware resources using the -w<N> flag. 

The workloads for this mark in mini1 subset are: 

1. <rgbcmyk-4M> 
2. <ipres-4M> 
3. <ippktcheck-4M> 
4. <md5-4M> 
5. <rotate-4Ms1> 
6. <rotate-4Ms64> 
7. <x264-4Mq> 
8. <iDCT-4M> 
 

ParallelMark = 10*geomean(geomean(5,6),1,2,3,4,7,8) 

NOTE: Several rotate workloads are included for the MultiMark, the final calculation takes 
a geomean of the rotate* workloads (to use it as one item for the mark). 

MixMark 
MixMark is perhaps the most telling mark, it consolidates the best throughput of workloads 
with multiple different work items. These workloads are closest to workloads on actual 
systems. The calculated throughput factor is 10 times the geometric mean of the iterations 
per second achieved with the best configuration for each workload (Note: 10 is a 
multiplication factor). 

The number of simultaneous work items (-c<N>) and the number of workers per work item 
(-<N>) may be modified for this mark. 

The workloads for this mark are: 

1. <4M-check-reassembly-tcp> 
2. <4M-check-reassembly-tcp-cmykw2-rotatew2> 
3. <4M-check-reassembly-tcp-x264w2> 
4. <4M-check-reassembly> 
5. <4M-cmykw2-rotatew2> 
6. <4M-rotatew2> 
7. <4M-cmykw2> 
8. <4M-tcp-mixed> 
9. <4M-x264w2> 
10. <4M-reassembly> 
11. <4M-check> 

Scaling 
Providing performance scaling information, we also define an associated Scale Factor. To 
calculate the Scale Factor, first calculate the geometric mean of the throughput for the 
workloads with only one work item at a time enabled. Then divide the performance mark by 
that number. 



 

 MultiBench Algorithms and Workload Datasheets Page 6 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Sample Scores 
The following table shows sample scores on an anonymous quad core platform: 

  Performance  Scale 

MultiMark 450.4 1.7 

ParallelMark 422.3 0.8 

MixMark 182.7 0.7 

 

These sample scores on a platform with 4 cores show some interesting information even 
without diving into the performance details of specific workloads. For example, consider the 
fact that the MultiMark scaling factor is 1.7 - rather then a number closer to 4 which you 
might expect. This factor strongly hints that the system can only use about 1/2 of the 
computing resources available to it on any particular workload. This may be related to the 
memory bottlenecks, synchronization efficiency of the platform and operating system, or 
both. 

More detailed examination of individual results will yield more answers (some of the 
answers you can find in MultiBench presentations made at several conferences and available 
on the EEMBC website). ParallelMark and MixMark scale factors for this system strongly 
indicate that synchronization overhead is so significant as to erase most of the benefits of 
using multiple cores to solve a single problem. However, the throughput numbers for the 
platform indicate strong single core processing power for a machine in that category. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 7 of 65 

MultiBench Architect 

Although MultiBench comes with a wide variety of pre-defined and tested workloads, you 
may want to compose custom workloads for testing specific system characteristics. The 
MultiBench Architect allows you to drag and drop work items to create virtually unlimited 
new workloads. 

 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

 
Drag and drop available work items into the 

Workload Definition window to create custom workloads. 

Creating a workload 

• Drag items from the list to the Workload Definition window. 
• Left click to edit item name/dataset/index. 
• Use the filter field to search through available items. 
• Rename the workload using the “Workload Name” field. 
• Save the workload using File/Save or File/SaveAs. 
• By default, workloads are saved in workloads/xml).  Use workload_parser.pl to 

create a makefile and source file for the workload. 

 



 

 MultiBench Algorithms and Workload Datasheets Page 8 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

MultiBench Algorithms  

The following pages describe the algorithms and kernels that form the basis for the 
MultiBench workloads.  
Consumer: MD5 
Consumer: H.264 
General: iDCT 
Office Automation: RGB to CMYK Conversion 
Consumer and Office Automation: Image Rotation 
Networking - IP Packet Check 
Networking - IP Reassembly 
Networking - Transmission Control Protocol (TCP) 

NOTE: Datasheets for some of the algorithms and kernels listed in the table in the section 
<Workload Organization> are not included in this MultiBench Databook. As noted above, 
the workloads derived from these algorithms and kernels are beta versions and included at 
no extra charge. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 9 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Consumer: MD5 

Description 
A benchmark kernel that calculates MD5 checksum (http://en.wikipedia.org/wiki/MD5) over 
multiple input buffers.  This benchmark kernel is computationally intensive. 

Concurrency 
The benchmark initiates <W> worker threads to do md5 checksum on <N> buffers of size 
<B>. 

<W>, <N> and <B> are all configurable via the dataset argument to <define_params_md5>. 

The benchmark initiates a new worker thread for every buffer, with total number of active 
threads bounded by <W>. 

Verification 
Output verification is CRC on the output digest of all input buffers.  CRC has been pre-
calculated for all predefined input sets. 

  

http://en.wikipedia.org/wiki/MD5


 

 MultiBench Algorithms and Workload Datasheets Page 10 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Consumer: H.264 

Description 
H.264 video encoding.  This benchmark is computationally intensive. 

Source 
This is a port of the x264 open source coder developed by videolan 
(http://www.videolan.org/developers/x264.html). 

Concurrency 
N frames are coded concurrently in N threads. 

Verification 
Output verification is via a bit accurate comparison to pre-computed encoded output.  Pre-
computed output is included for multiple predefined input streams and exists under 
benchmarks/video/x264data 

http://www.videolan.org/developers/x264.html


 

 MultiBench Algorithms and Workload Datasheets Page 11 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

General: iDCT 
Inverse Discrete Cosine Transform 

Benchmark Description 
This EEMBC benchmark simulates an embedded automotive/industrial application 
performing digital video and graphics applications such as image recognition.  The kernel 
performs an inverse discrete cosine transform (iDCT) on an input data matrix set using 64-
bit integer arithmetic. 

NOTE:  This benchmark has been adapted from the v1.1 automotive suite with the following 
changes: 

1. Removed code duplication. 
2. Reading data once on initialization from a file.   
3. An iteration is a pass on the full input dataset, rather than processing of a single 

value.   
4. New datasets.   
5. Enable application of multiple workers to speed up processing for parallel 

execution. 



 

 MultiBench Algorithms and Workload Datasheets Page 12 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Office Automation: RGB to CMYK Conversion 

Description 
Benchmarks digital image processing performance in printers and other digital imaging 
products 

• Explores basic arithmetic and minimum value detection capability 
• Provides opportunities for Full Fury benchmark optimization 
• Conditional move and multi-byte processing, exercising SIMD and VLIW 

architectures 
• Integer implementation 

Application 
RGB to CMYK conversion is widely used in color printers.  RGB inputs from PC data are 
converted to CMYK color signals for printing. 

Benchmark Details 
This benchmark explores the target CPU’s ability to perform basic arithmetic and minimum 
value detection.  The R, G, B 8-bit pixel color image input is fed to the following equation: 
/* calculate complementary colors / c = 255 – R; m = 255 – G; y = 255 – B; / find the black 
level k / K = minimum (c,m,y) / correct complementary color lever based on k */ C = c – K 
M = m – K Y = y - K RGB values are in the range of [0:255] CMYK values are in the range 
of [0:255] The input and output data sizes vary.  For example, the 320x240 data for RGB 
and CMYK is stored sequentially as: R[0], G[0], B[0], R[1], G[1], B[1], R[76799], 
G[76799], B[76799] C[0], M[0], Y[0], K[0], C[1], M[1], Y[1],K[1] C[76799], M[76799], 
Y[76799], K[76799]. 

The pointers are incremented by one to access R, G, B or C, M, Y, K data in this order.  If 
the benchmark score is extrapolated for a larger image, the processing time will be almost 
linearly proportional to the pixel count (e.g. for a 640 x 480 image, it will be multiplied 
times 4).  The iteration/second score will be the inverse (e.g. for a 640 x 480 image, 
iterations/sec will be multiplied by .25).  There is data dependency in the cycle counts for the 
minimum value K search, due to branch taken or not taken.  If this operation is handled by 
conditional move, the cycle will be constant. 

Parallelism for multiple workers 
The image processing can be divided among multiple workers, such that each worker is 
responsible for X pixels.  X = Total image pixels / number of workers. 

Since the processing of each pixel is independent, this processing allows scalability with no 
synchronization, other than at the beginning of the input image (to allocate a piece of the 
input to each worker), and at the end of processing.  In a real work application, this would 
require that the whole image is available before processing is started. 

Verification 
The output is verified by computing the CRC of the output image.  Precomputed CRC values 
exist for EEMBC datasets. 



 

 MultiBench Algorithms and Workload Datasheets Page 13 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Analysis of Computing Resources 
A “for loop” calculates the conversion of one set of RGB inputs and CMYK outputs at a 
time.  A set of R, G, B input data is read from the memory by incrementing a read pointer.  
A set of C, M, Y, K output data is written back to the memory by incrementing a write 
pointer.  There is no complex two-dimensional access.  The complementary color calculation 
and correction are simple subtract calculations without any MAC operation.  The minimum 
value search has two branches for processing each pixel. 

If (c<m) { K = (Byte)(c<y ? c:y); } else { K = (Byte)(m<y ? m:y); } This can be a very 
expensive routine because of the branch penalty. 

Full-Fury Optimization 
By using the compare and conditional moves, the branch penalty can be avoided.  VLIW and 
SIMD can process multiple bytes of data at a time.  For example, a four-way SIMD 
microprocessor can handle 4 x 8-bit data every cycle. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 14 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Image Rotation 

Description 
Benchmark to rotate a binary image (greyscale or color) of arbitrary size by 90/180/270 
degrees.  This benchmark is memory intensive, with very little computation. 

Concurrency 
Rotation is done by multiple workers cooperating to process a single image.  Each worker 
thread acquires slices (lines of the input) and writes them to the output buffer. 

Potential bottlenecks are related to memory interfaces and synchronization between worker 
threads. 

Synchronization bottlenecks can occur directly due to mutex used to acquire input, or 
indirectly due to cache coherency protocols enforced on the output image. 

Implementation 
Image is loaded into a buffer in memory before timing starts.  An output buffer is allocated 
after timing starts. 

Verification 
Output verification is via CRC of the output. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 15 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Networking - IP Packet Check 

Description 
Simulates a network router to compare memory bus effects. This benchmark focuses on 
checksum calculations and logical compare operations. 

Application 
The IP Packet Check benchmark performs a subset (essentially the IP Header Validation) of 
the network layer forwarding function of the Internet protocol suite as specified in RFC1812, 
“Requirements for IP Version 4 Routers” which can be found at 
http://www.faqs.org/rfcs/rfc1812.html.  The benchmark provides an indication of the 
potential performance of a microprocessor in an IP router system. 

A TCP/IP router normally examines the IP protocol header as part of the switching process.  
It generally removes the Link Layer header from a received message, modifies the IP header, 
and replaces the Link Layer header for retransmission.  In this benchmark, the Link Layer 
header has already been removed and will not be replaced, i.e. all processing is done at 
Layer 3, on the assumption that lower level functions are handled by hardware or an 
interrupt service routine. 

Detailed Description 
The benchmark simulates a router with four network interfaces.  It initializes a buffer of 
programmable size with IP datagrams. 

The header is always the minimum 20 bytes and is made up of random characters except in 
the byte positions to be checked (IP version, checksum, and length).  A checksum for the IP 
header is calculated and stored in each datagram.  Errors are introduced in certain headers 
and an error count is logged.  Datagrams are allowed to be aligned on the best natural 
boundary of the microprocessor and padding is added between them.  As a benchmark, the 
IP packet size is chosen randomly to be either 46 bits (small packets) or 1500 bits (large 
packets) in size.  Packet receipt is simulated by creating a dummy store queue.  One timed 
iteration of the benchmark consists of processing each packet header pointed to by the 
receive queue and moving the descriptor to a holding queue.  Results are reported in 
iterations per second. 

Two descriptor queues are created with a pointer to the next descriptor and a pointer to the 
datagram header.  One queue is called the receive queue (rx_queue in the code) and the other 
queue is the holding queue. 

IP datagrams are often stored like this in actual systems using descriptors that are separate 
from the datagram.  A descriptor has a next member that allows it to be put in a linked list 
and a pointer to a datagram. 

As each datagram is processed by the benchmark algorithm it is removed from the receive 
queue and placed in the holding queue.  Processing consists of: 1.  Checking that the packet 
length is large enough to hold the minimum length legal IP datagram (>=20 bytes).  2. 
Checking that the IP checksum is correct (a bad packet counter is incremented if the 
checksum is not correct) 3.  Checking that the IP version number is 4 4.  Checking that the 
IP header length field is large enough to hold the minimum length legal IP datagram (20 
bytes = 5 words) 5.  Checking that the IP total length field is large enough to hold the IP 
datagram header, whose length is specified in the IP header length field. 

http://www.faqs.org/rfcs/rfc1812.html


 

 MultiBench Algorithms and Workload Datasheets Page 16 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

A single iteration of the benchmark is complete when the receive queue of packet descriptors 
is empty.  At the end of one iteration, the receive queue and the holding queue are switched 
allowing the next iteration to execute with a full receive queue. 

Analysis of Computing Resources 
The IP Packet Check benchmark performs integer math on 16 bit unsigned quantities (the 
checksum calculation) and shift and logical compare operations (the IP version number and 
length checks).  These operations and accessing the data from memory are primarily what is 
tested by this benchmark.  Though the buffer sizes in memory are large, the checksum and 
verification process is only over the IP descriptors (first 20 bytes of each packet).  The code 
size is trivial and easily fits in even a small L1 Instruction Cache. 

Verification 
Verification is done by testing the classification of each packet.  Each stage in the RFC is 
given a different error code, and errors on the predefined packet stream have all been 
precomputed. 

Special Notes 
Do not directly compare the results of IP Packet Check benchmark to EEMBC Networking 
Version 1 or 2 Packet Flow benchmarks.  Even though the benchmarks test the same 
function, the algorithm was changed in IP Packet Check to allow a user specified alignment 
without impacting the number packets processed, as well as parallel processing with multiple 
workers. 

 

 



 

 MultiBench Algorithms and Workload Datasheets Page 17 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Networking - IP Reassembly 

Description 
Simulate a network router reassembling fragmented packets. 

Application 
The Internet Protocol allows IP fragmentation so that datagrams can be fragmented into 
pieces small enough to pass over a link with a smaller MTU than the original datagram size. 

RFC 791 describes the procedure for IP fragmentation, transmission and reassembly of 
datagrams.  RFC 815 describes a simplified reassembly algorithm which can easily be 
implemented in hosts.  This benchmark kernel implements an algorithm similar to the one 
described in RFC 815 (http://tools.ietf.org/html/rfc815).  All packets are fragments of one or 
more IP packets terminating at this router. 

Detailed Description 
This kernel is based on the NetBSD kernel code.  The benchmark simulates the arrival of a 
large number of IP fragments of varying lengths.  Internally they are split to buffers of 
predefined size, so that fragments may require a single buffer, a double buffer or a whole 
cluster of buffers.  The degree of fragmentation, the number of fragments per IP packet, the 
arrival order of the fragments, and the number of packets being reassembled in parallel is 
configurable.  Each thread in the benchmark kernel accepts an input queue of packets to 
unfragment.  Each queue has been classified prior to reassembly so that the queue contains 
all fragments for each full IP packet on the queue.  When a packet “arrives” it is checked for 
basic correctness.  Its packet ID, source, and destination parameters are compared with those 
of all the packets waiting for reassembly.  If the fragment corresponds to a new packet, a 
new queue is started to hold the additional fragments that will be required to reassemble the 
packet.  If the fragment belongs to a packet reassembly effort already in progress, then the 
doubly linked list which forms the reassembly queue is traversed to determine where this 
fragment belongs in the packet.  Each fragment contains offset information indicating its 
relative position to the start of the packet.  The new fragment is then inserted into the linked 
list at the appropriate position, and because fragment overlap is possible, it may be necessary 
to trim (or even dequeue) adjacent fragments.  A check is subsequently made for complete 
reassembly.  If, with the addition of the current fragment, reassembly is complete, fragment 
concatenation is undertaken and the reassembled packet is passed up the stack.  Since each 
processing thread is in effect a different target, there is no synchronization or data sharing 
between the threads. 

Analysis of Computing Resources 
The benchmark spends most of the time managing queue structures.  This makes the code 
very branchy, where the branches depend on memory contents rather then calculations. 

Verification 
Verification is done by testing the CRC of each complete packet after it has been 
reassembled.  The CRC has been precomputed previously before the packet has been 
fragmented. 

http://tools.ietf.org/html/rfc815


 

 MultiBench Algorithms and Workload Datasheets Page 18 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Networking - Transmission Control Protocol (TCP) 

Description 
This benchmark kernel captures most frequently used and most processing-intensive portion 
of RFC793 protocol 

• Simulates TCP traffic characteristics in real networks 
• De-couples processor speed from any randomness in TCP operation 

Application 
The ability of an embedded processor to handle Transmission Control Protocol (TCP) layer 
processing is an important consideration for avoiding bottlenecks in network equipment 
designs.  Unlike ATM and some other network protocols that are mainly processed by 
network processors, ASICs, or specialized hardware blocks directly attached to general 
purpose processors, the TCP layer is often processed by the CPUs in general purpose 
processors.  The interest of benchmarking TCP performance on embedded general-purpose 
processors has increased with the connection of more and more embedded devices to the 
network.  The flexibility of TCP is such that it is used in wireline and wireless applications.  
The ISO reference model is commonly used when discussing protocol layering.  This model 
depicts the TCP layer as sitting on top of the Internet Protocol (IP) layer and under the 
application layer.  The function of IP is to provide a means of transferring TCP segments 
over inter-connected networks.  IP has unique addressing information for each network 
element, and data communication is based on routing that provides best effort service to TCP 
and other transmission control layer protocols like UDP.  In contrast to IP, TCP service is a 
reliable, connection-oriented byte stream service.  It typically interfaces with an unreliable 
network layer protocol.  Unlike other connection-oriented protocols that are based on a 
reliable network layer, TCP has to implement a more complex transmission control scheme 
to overcome these seemingly contradictory philosophies between protocol layers.  The basic 
operation of TCP can be broken down into the following six areas: 1 - Basic data transfer; 2 
– Reliability; 3 - Flow control; 4 – Multiplexing; 5 – Connections; 6 - Precedence and 
security. 

The core of the TCP protocol is to transfer data between two connection endpoints.  Like 
data processing in most of the network protocols, large data blocks are chopped into 
optimized sizes (as deemed by TCP) and encapsulated in a TCP segment.  Communications 
in TCP involve both data and control operations.  Comparing data processing with other 
protocols, the biggest difference with TCP is a mandatory checksum across the entire 
segment.  This is because TCP provides reliable communication service on top of an 
unreliable IP layer.  For the same reason, TCP requires fairly complex control and signaling 
to achieve reliability, efficiency, and connection management.  Compared with IP, data 
operations are simpler but are more expensive in terms of performance.  The cost associated 
with the data block size is linear in most of the cases.  (For example, computing IP style 
checksum and memory copy.)  The benchmark captures all the costly data manipulations 
while some of the complex but rarely used control logic can be omitted. 

Benchmark Details 
This benchmark implementation captures the most frequently used and processing-intensive 
portion of the protocol described in RFC793.  The benchmark measures the data and buffer 
management performance, which is common and expensive in TCP implementations.  Also, 
because this benchmark targets embedded general-purpose processors, the execution 



 

 MultiBench Algorithms and Workload Datasheets Page 19 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

environment should match code size and memory scale.  Typically, execution environments 
include a reasonably-sized memory and high-performance RTOS with shared kernel and 
user addressing spaces.  The scope of this benchmark does not include measuring overall 
network performance.  EEMBC’s TCP benchmark follows these general requirement 
guidelines.  Accurate – the benchmark captures all major TCP operations in terms of 
processing cost Realistic – the benchmark simulates TCP traffic characteristics in real 
networks Deterministic – the benchmark de-couples processor speed from any randomness 
in TCP operation Simplistic – the benchmark implementation allows for a simplified TCP 
implementation with reasonable assumptions 

Application protocols that use bulk transfer contribute 90% of the traffic in terms of number 
of bytes but represent only about half the packets.  The TCP benchmark is designed to be 
flexible enough to capture processor performance for both transfer types. 

Benchmark performance metrics include 
1. Complete event-driven TCP state machine, connection management signaling 
2. Transient behavior in short TCP conversations 
3. Buffer management – Data manipulation in both ingress and egress directions 
4. Queue management – Send queue, unacknowledged queues in egress direction 
5. Separate re-entrant client-server task with context switching 
6. Basic flow control 
7. Multiple data stream (phase II) 
8. Configurable packet size distribution for different traffic patterns 

RFC793 requirements that are not included in benchmark include 
1. Real-time timer related – RTT estimation and update, RTO 
2. Exception handling, out-of-order delivery, duplicates and lost packets 

TCP behavior varies dramatically between different applications.  Packet sizes, conversation 
length, and queue depth can all affect processing in different ways.  To cope with different 
scenarios, the benchmark is configurable. 

Analysis of Computing Resources 
Each work item based on this kernel simulates network traffic using the following steps: 1.  
Initiate server task.  2. Insert network channel effect 3.  Initiate client task 4.  Insert network 
channel operations of client.  This processing is repeated until all client connections are 
closed.  This kernel is fairly branch intensive, and CRC computation over the whole packet 
is also time consuming. 

Verification 
Each step of the packet processing, as well as the internal structure modifications can be 
tracked for verification.  Tracking is via a CRC on the control structures used for each 
connection. 

 

 

 

 

 



 

 MultiBench Algorithms and Workload Datasheets Page 20 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Workload Descriptions 

ippktcheck-4M 
Description: This workload simulates the activity that may happen when checking 
packet headers over 4M of data. All work items have a working set size of ~4M. 

Workload 1 (ippktcheck-4M) Composition: 

► 1 instance of ippktcheck, input 4M, variable number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (ippktcheck-4Mw1) Composition: 

► 1 instance of ippktcheck, input 4M, 1 worker 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 4M - 
though only the packet headers are processed. 

• The input 4M contains 5092 Packets, 1729 of them are corrupt, and the 
algorithm will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 21 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

ipres-4M Variations 
Description: This workload simulates the activity that may happen when doing ip 
reassembly for packets over 1M of packets data.  

Workload 1 (ipres-4M) Composition: 

► 1 instance of ipres, input 3.62M, variable number of workers 

(Run with only one context active (-c1) but variable number of workers  
(-w<N>).) 

Workload 2 (ipres4Mw1) Composition: 

► 1 instance of ipres, input 3.62M, 1 worker 

Workload 3 (ipres4Mw2) Composition: 

► 1 instance of ipres, input 3.62M, 2 workers 

IP Reassembly kernel details: 

• Memory to hold fragments: 1.09 M 

• IP fragments: 4454 

• Single fragment packets: 3311 

• Two fragment packets (linked): 377 

• Fragment clusters (more than 2 fragments per packet): 370 

• See the ip reassembly datasheet for detailed kernel description.  

 

  



 

 MultiBench Algorithms and Workload Datasheets Page 22 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-check-reassembly 
Description: This workload simulates part of the activity that may happen when 
sending 4 greyscale images to a printer over the network in landscape orientation. 
All work items have a working set size of ~4M. 

Workload (4M-check-reassembly) Composition:  

► 1 instance of ippktcheck, input 4M, 1 worker 
► 1 instance of ipres, input 3.62M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 4M - 
though only the packet headers are processed. 

• The input 4M contains 5092 Packets, 1729 of them are corrupt, and the 
algorithm will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 1.09 M 

• IP fragments: 4454 

• Single fragment packets: 3311 

• Two fragment packets (linked): 377 

• Fragment clusters (more than 2 fragments per packet): 370 

• See the ip reassembly datasheet for detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 23 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-tcp-mixed 
Description: This workload simulates TCP stack activity sending 4M of data in TCP 
connections. 

Workload (4M-tcp-mixed) Composition:  

► 1 instance of tcp, input 4M, 1 worker 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 4M 

• See the TCP datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 24 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-check-reassembly-tcp 
Description: This workload simulates part of the activity that may happen when 
sending 4 greyscale images to a printer over the network in landscape orientation. 
All work items have a working set size of ~4M. 

Workload (4M-check-reassembly-tcp) Composition:  

► 1 instance of tcp, input 4M, 1 worker 
► 1 instance of ippktcheck, input 4M, 1 worker 
► 1 instance of ipres, input 3.62M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 4M - 
though only the packet headers are processed. 

• The input 4M contains 5092 Packets, 1729 of them are corrupt, and the 
algorithm will classify them accordingly.  Bit corruption is uniformly 
distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 1.09 M 

• IP fragments: 4454 

• Single fragment packets: 3311 

• Two fragment packets (linked): 377 

• Fragment clusters (more than 2 fragments per packet): 370 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 4M 

• See the TCP datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 25 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-cmykw2 
Description: This workload simulates color space conversion that can happen in a 
color printer when switching from RGB to CMYK color space. All work items have a 
working set size of ~4M. 

Workload (4M-cmykw2) Composition:  

► 1 instance of rgbcmyk, 4M, 2 workers 

rgbcmyk: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 



 

 MultiBench Algorithms and Workload Datasheets Page 26 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-rotatew2 
Description: This workload simulates activity that can happen in a printer when 
printing in landscape orientation. In particular the input image is rotated 90deg. All 
work items have a working set size of ~4M. 

Workload (4M-rotatew2) Composition:  

► 1 instance of rotate, 4M, 2 workers 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

 
NOTES: 

The same images are used for image rotation and color conversion. 

The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 27 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-cmykw2-rotatew2 
Description: This workload simulates part of the activity that may happen when 
sending 4 greyscale images to a printer over the network in landscape orientation. 
In particular, the image is rotated and then converted to cmyk color space. All work 
items have a working set size of ~4M. 

Workload (4M-cmykw2-rotatew2) Composition: 

► 1 instance of rotate, 4M, 2 workers 
► 1 instance of rgbcmyk, 4M, 2 workers 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

rgbcmyk: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

 

NOTES: 

The same images are used for image rotation and color conversion. 

The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 28 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-check-reassembly-tcp-cmykw2-rotatew2 
Description: This workload simulates part of the activity that may happen when 
sending 4 greyscale images to a printer over the network in landscape orientation. 
All work items have a working set size of ~4M 

Workload (4M-check-reassembly-tcp-cmykw2-rotatew2) 
Composition: 

► 1 instance of tcp, input 4M, 1 worker 
► 1 instance of ippktcheck, input 4M, 1 worker 
► 1 instance of ipres, input 3.62M, 2 workers 
► 1 instance of rotate, 4M, 2 workers 
► 1 instance of rgbcmyk, 4M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 4M - 
though only the packet headers are processed. 

• The input 4M contains 5092 Packets, 1729 of them are corrupt, the algorithm 
will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 1.09 M 

• IP fragments: 4454 

• Single fragment packets: 3311 

• Two fragment packets (linked): 377 

• Fragment clusters (more than 2 fragments per packet): 370 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 4M 

• See the TCP datasheet for more detailed kernel description. 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 29 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

rgbcmyk: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

 
NOTES: 

The same images are used for image rotation and color conversion. 

The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 30 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

x-4M Variations 
Description: These workloads encode a stream of images in YUV format to h.264 
main profile. All work items have a working set size of ~4M. 

Workload 1 (x264-4M) Composition:  

► 1 instance of h.264 encoding, input 2.5M, flexible number of workers 
► Input stream size for x.264: marsface - 2.5M input, 47K output 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (x264-4Mw1) Composition:  

► 1 instance of h.264 encoding, input 2.5M, 1 worker 
► Input stream size for x.264: marsface - 2.5M input, 47K output 

Workload 3 (x264-4Mw2) Composition:  

► 1 instance of h.264 encoding, input 2.5M, 2 workers 
► Input stream size for x.264: marsface - 2.5M input, 47K output 

Workload 4 (x264-4Mq) Composition:  

► 1 instance of h.264 encoding, input 2.5M, flexible number of workers 
► Input stream size for x.264: quad marsface - 2.5M input, 47K output 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 5 (x264-4Mqw1) Composition:  

► 1 instance of h.264 encoding, input 2.5M, 1 worker 
► Input stream size for x.264: quad marsface - 2.5M input, 47K output 

X.264 details: 

• Input parameters  
   qp=20  
   ref=1  
   keyint=30  
   scenecut=-1  
   bframes=1  
   no-b-adapt  

• See H.264 for more details about this kernel. 



 

 MultiBench Algorithms and Workload Datasheets Page 31 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

4M-check-reassembly-tcp-x264w2 
Description: This workload simulates part of the activity that may happen when 
sending encoding images coming over the network to h.264 format for storage. All 
work items have a working set size of ~4M. 

Workload (4M-check-reassembly-tcp-x264w2) Composition: 

► 1 instance of tcp, input 4M, 1 worker 
► 1 instance of ippktcheck, input 4M, 1 worker 
► 1 instance of ipres, input 3.62M, 2 workers 
► 1 instance of h.264 encoding, input 2.5M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 4M - 
though only the packet headers are processed. 

• The input 4M contains 5092 Packets, 1729 of them are corrupt, the algorithm 
will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 1.09 M 

• IP fragments: 4454 

• Single fragment packets: 3311 

• Two fragment packets (linked): 377 

• Fragment clusters (more than 2 fragments per packet): 370 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 4M 

• See the TCP datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 32 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

X.264 details: 

• Input parameters  
   qp=20   
   qp ref=1   
   qp keyint=30   
   qp scenecut=-1   
   qp bframes=  
   qp no-b-adapt  

• See H.264 for more details about this kernel. 

 
Input stream size for x.264: marsface - 2.5M input, 47K output 



 

 MultiBench Algorithms and Workload Datasheets Page 33 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

ippktcheck-64M Variations 
Description: This workload simulates packet header check (RFC1812) over 64M 
worth of packets.  

Workload 1 (ippktcheck-64M) Composition: 

► 1 instance of ippktcheck, input 64M, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (ippktcheck-64M-1Worker) Composition: 

► 1 instance of ippktcheck, input 64M, 1 worker 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 64M - 
though only the packet headers are processed. 

• The input 64M contains 81460 Packets, 27677 of them are corrupt, the 
algorithm will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 34 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-check-reassembly 
Description: This workload contains networking algorithms operating over a ~64M 
input each. 

Workload (64M-check-reassembly) Composition: 

► 1 instance of ippktcheck, input 64M, 1 worker 
► 1 instance of ipres, input 72M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 64M - 
though only the packet headers are processed. 

• The input 64M contains 81460 Packets, 27677 of them are corrupt, and the 
algorithm will classify them accordingly.  
Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 72.72 M 

• IP fragments: 297859 

• Single fragment packets: 220872 

• Two fragment packets (linked): 25252 

• Fragment clusters (more than 2 fragments per packet): 24394 

• See the ip reassembly datasheet for detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 35 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-check-reassembly-tcp 
Description: This workload simulates activity that may happen when compressing 
6 video streams and sending them over the network. Actual streams to go over the 
network are about 10M, the rest is considered overhead, bad packets, and other 
data. In particular, the network algorithms are simulating significant bit corruption. 

Workload (64M-check-reassembly-tcp) Composition: 

► 1 instance of tcp, input 64M, 1 worker 
► 1 instance of ippktcheck, input 64M, 1 worker 
► 1 instance of ipres, input 72M, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 64M - 
though only the packet headers are processed. 

• The input 64M contains 81460 Packets, 27677 of them are corrupt, and the 
algorithm will classify them accordingly.  
Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 72.72 M 

• IP fragments: 297859 

• Single fragment packets: 220872 

• Two fragment packets (linked): 25252 

• Fragment clusters (more than 2 fragments per packet): 24394 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 64M 

• See the TCP datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 36 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-cmykw2 
Description: This workload does the color space conversion from RGB to CMYK on 
4 images of 12M. 

Workload (64M-cmykw2) Composition: 

►  4 instances of rgbcmyk, 12M, 2 workers 

rgbcmyk: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 37 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-rotatew2 
Description: This workload rotates 4 images 90 deg clockwise. Each image is 12M 
in size. 

Workload (64M-rotatew2) Composition: 

►  4 instances of rotate, 12M, 2 workers 

Image Rotation: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

 
NOTE: The images are copies of the same input image.  



 

 MultiBench Algorithms and Workload Datasheets Page 38 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-cmykw2-rotatew2 
Description: This workload rotates and color converts 4 images. Each image is 
12M in size. 

Workload (64M-cmykw2-rotatew2) Composition: 

►  4 instances of rotate, 12M, 2 workers 
►  4 instances of rgbcmyk, 12M 2 workers 

Image Rotation: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

rgbcmyk: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

NOTES: 

The same images are used for image rotation and color conversion. 

The images are copies of the same input image. 

The 48M of image data actually translate to 64M of network traffic due to overhead 
and packet corruption in this scenario. 



 

 MultiBench Algorithms and Workload Datasheets Page 39 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-check-reassembly-tcp-cmykw2-rotatew2 
Description: This workload simulates activity that may happen when sending 4 
greyscale images to a printer over the network in landscape orientation. 

Workload (64M-check-reassembly-tcp-cmykw2-rotatew2) 
Composition: 

► 1 instance of tcp, input 64M, 1 worker 
► 1 instance of ippktcheck, input 64M,  1 worker 
► 1 instance of ipres, input 72M, 2 workers 
► 4 instances of rotate, 12M, 2 workers 
► 4 instances of rgbcmyk, 12M 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 64M - 
though only the packet headers are processed. 

• The input 64M contains 81460 Packets, 27677 of them are corrupt, the 
algorithm will classify them accordingly.  Bit corruption is uniformly 
distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 72.72 M 

• IP fragments: 297859 

• Single fragment packets: 220872 

• Two fragment packets (linked): 25252 

• Fragment clusters (more than 2 fragments per packet): 24394 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 64M 

• See the TCP datasheet for more detailed kernel description. 

Image Rotation: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 40 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

rgbcmyk: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

 
NOTES: 

The same images are used for image rotation and color conversion. 

The images are copies of the same input image. 

The 48M of image data actually translate to 64M of network traffic due to overhead 
and packet corruption in this scenario. 



 

 MultiBench Algorithms and Workload Datasheets Page 41 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-x264 Variations 
Description: This workload performs h264 encoding of 6 input streams. 

Workload 1 (x264-64M ) Composition: 

►  2 instances of x264-data1, flexible number of workers 
►  2 instances of x264-data2, flexible number of workers 
►  2 instances of x264-data4, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (64M-x264-1worker) Composition: 

►  2 instances of x264-data1, 1 worker 
►  2 instances of x264-data2, 1 worker 
►  2 instances of x264-data4, 1 worker 

Workload 3 (64M-x264-2workers) Composition: 

►  2 instances of x264-data1, 2 workers 
►  2 instances of x264-data2, 2 workers 
►  2 instances of x264-data4, 2 workers 

Workload 4 (64M-x264-4workers) Composition: 

►  2 instances of x264-data1, 4 workers 
►  2 instances of x264-data2, 4 workers 
►  2 instances of x264-data4, 4 workers 

Workload 5 (64M-x264-8workers) Composition: 

►  2 instances of x264-data1, 8 workers 
►  2 instances of x264-data2, 8 workers 
►  2 instances of x264-data4, 8 workers 

X.264 details: 

• Input parameters for all streams 
   qp=20  
   ref=1  
   keyint=30  
   scenecut=-1  
   bframes=1  
   no-b-adapt  

• See H.264 for more details about this kernel. 



 

 MultiBench Algorithms and Workload Datasheets Page 42 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Input stream sizes for x.264: 

• data1 - 24M input, 2M output 

• data2 - 2M input, 47K output 

• data4 - 37M input, 2.5M output 



 

 MultiBench Algorithms and Workload Datasheets Page 43 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

64M-check-reassembly-tcp-h264w2 
Description: This workload simulates activity that may happen when compressing 
6 video streams and sending them over the network. Actual streams to go over the 
network are about 10M, the rest is considered overhead, bad packets, and other 
data. The network algorithms are simulating significant bit corruption. 

Workload (64M-check-reassembly-tcp-h264w2) Composition: 

► 1 instance of tcp, input 64M, 1 worker 
► 1 instance of ippktcheck, input 64M, 1 worker 
► 1 instance of ipres, input 72M, 2 workers 
►  2 instances of x264-data1, 2 workers 
►  2 instances of x264-data2, 2 workers 
►  2 instances of x264-data4, 2 workers 

Packet Header Check (RFC1812) details: 

• The size of the input packet buffer for the packet check algorithm is 64M - 
though only the packet headers are processed. 

• The input 64M contains 81460 Packets, 27677 of them are corrupt, the 
algorithm will classify them accordingly. Bit corruption is uniformly distributed. 

• See the packet header check datasheet for more detailed kernel description. 

IP Reassembly kernel details: 

• Memory to hold fragments: 72.72 M 

• IP fragments: 297859 

• Single fragment packets: 220872 

• Two fragment packets (linked): 25252 

• Fragment clusters (more than 2 fragments per packet): 24394 

• See the ip reassembly datasheet for detailed kernel description. 

TCP details: 

• TCP ring size: 8 

• Total input data for TCP transfer: 64M 

• See the TCP datasheet for more detailed kernel description. 



 

 MultiBench Algorithms and Workload Datasheets Page 44 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

X.264 details: 

• Input parameters for all streams 
   qp=20  
   ref=1  
   keyint= 
   scenecut=-1  
   bframes=1  
   no-b-adapt  

• See H.264 for more details about this kernel. 

Input stream sizes for x.264: 

• data1 - 24M input, 2M output 

• data2 - 2M input, 47K output 

• data4 - 37M input, 2.5M output 



 

 MultiBench Algorithms and Workload Datasheets Page 45 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

iDCT-4M Variations 
Description: This workload performs iDCT on buffers. Total size of buffers is 4M. 

Workload 1 (iDCT-4M) Composition: 

► 1 instance of iDCT, 4M input, variable number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (iDCT-4Mw1) Composition: 

► 1 instance of iDCT, 4M input, one worker 

iDCT details: 

•  See the iDCT datasheet for more details on this kernel. 



 

 MultiBench Algorithms and Workload Datasheets Page 46 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

ipres-72M 
Description: This workload performs ip reassembly on fragments whose total size 
is ~72M. 

Workload 1 (ipres-72M) Composition: 

► 1 instance of ipres, input 72M, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (ipres-72M1worker) Composition: 

► 1 instance of ipres, input 72M, 1 worker 

Workload 3 (ipres-72M2 worker) Composition 

► 1 instance of ipres, input 72M, 2 workers 

IP Reassembly kernel details: 

• Memory to hold fragments: 72.72 M 

• IP fragments: 297859 

• Single fragment packets: 220872 

• Two fragment packets (linked): 25252 

• Fragment clusters (more than 2 fragments per packet): 24394 

• See the ip reassembly datasheet for detailed kernel description. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 47 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

md5-32M Variations 
Description: This workload performs MD5 checksum on buffers. Total size of 
buffers is 32M. 

Workload 1 (md5-32M) Composition: 

► 1 instance of md5, 32M input, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (md5-32Mw1) Composition: 

► 1 instance of md5, 32M input, 1 worker 

Workload 3 (md5-32Mw2) Composition: 

► 1 instance of md5, 32M input, 2 workers 

Workload 4 (md5-32Mw4) Composition: 

► 1 instance of md5, 32M input, 4 workers 

MD5 details: 

• Number of buffers for digest: 128 

• Size of each buffer: 128K 

• See MD5 for more details on this kernel. 



 

 MultiBench Algorithms and Workload Datasheets Page 48 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

md5-4M Variations 
Description: This workload performs MD5 checksum on buffers. Total size of 
buffers is 4M. 

Workload 1 (md5-4M) Composition: 

► 1 instance of md5, 4M input, flexible number of workers to fit the platform 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (md5-4Mw1) Composition: 

► 1 instance of md5, 4M input, 1 worker 

MD5 details: 

• Number of buffers for digest: 128 

• Size of each buffer: 32K 

• See MD5 for more details on this kernel. 



 

 MultiBench Algorithms and Workload Datasheets Page 49 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rgbcmyk-4M Variations 
Description: This workload performs color conversion from RGB to CMYK color 
space. CMYK colors are used in color printers, and RGB are used for screen displays. 
All work items have a working set size of ~4M.  

Workload 1 (rgbcmyk-4M) Composition: 

► 1 instance of rgbcmyk, 4M, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rgbcmyk-4Mw1) Composition: 

► 1 instance of rgbcmyk, 4M, 1 worker 

rgbcmyk: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 



 

 MultiBench Algorithms and Workload Datasheets Page 50 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rgbcmyk-5x12M Variations 
Description: This workload does the color space conversion from RGB to CMYK on 
5 12M images. 

Workload 1 (rgbcmyk-5x12M) Composition:  

► flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rgbcmyk-5x12M1workers) Composition:  

► 1 worker 

Workload 3 (rgbcmyk-5x12M2workers) Composition:  

► 2 workers 

Workload 4 (rgbcmyk-5x12M4workers) Composition:  

► 4 workers 

Workload 5 (rgbcmyk-5x12M8workers) Composition:  

► 8 workers 

rgbcmyk: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: Convert from screen RGB to printer CMYK color space. 

• See the rgb to cmyk conversion datasheet for more detailed kernel 
description. 

Image Details: 

• 2272 x 1704 Pixels 

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 51 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-16x4Ms1 Variations 
Description: This workload rotates 16 4M grayscale images by 90 deg clockwise. 
Image slice size is 1 and rotation is 1 line at a time. 

Workload 1 (rotate-16x4Ms1) Composition:  

► flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-16x4Ms1w1) Composition:  

► 1 worker 

Workload 3 (rotate-16x4Ms1w2) Composition:  

► 2 workers 

Workload 4 (rotate-16x4Ms1w4) Composition:  

► 4 workers 

Workload 5 (rotate-16x4Ms1w8) Composition:  

► 8 workers 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

• 256 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 52 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-16x4Ms32 Variations 
Description: This workload rotates 16 4M greyscale images by 90 deg clockwise, 
32 lines at a time (slice size of 32). 

Workload 1 (rotate-16x4Ms32) Composition:  

► flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-16x4Ms32w1) Composition:  

► 1 worker 

Workload 3 (rotate-16x4Ms32w2) Composition:  

► 2 workers 

Workload 4 (rotate-16x4Ms32w4) Composition:  

► 4 workers 

Workload 5 (rotate-16x4Ms32w8) Composition:  

► 8 workers 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

• 256 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 53 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-16x4Ms4 Variations 
Description: This workload rotates 16 4M greyscale images by 90 deg clockwise, 4 
lines at a time (slice size of 4). 

Workload 1 (rotate-16x4Ms4w1) Composition:  

► 1 worker 

Workload 2 (rotate-16x4Ms4w2) Composition:  

► 2 workers 

Workload 3 (rotate-16x4Ms4w4) Composition:  

► 4 workers 

Workload 4 (rotate-16x4Ms4w8) Composition:  

► 8 workers 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

• 256 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 54 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-16x4Ms64 Variations 
Description: This workload rotates 16 images by 90 deg clockwise, 4 lines at a 
time (slice size of 64). 

Workload 1 (rotate-16x4Ms64) Composition:  

► flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-16x4Ms64w1) Composition:  

► 1 worker 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

• 256 unique colors 

 
NOTE: The images are copies of the same input image. 



 

 MultiBench Algorithms and Workload Datasheets Page 55 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-34kx128w1 
Description: This workload rotates 128 34k greyscale images by 90 deg clockwise, 
64 lines at a time (slice size = 64). Total input size is 4M. 

Workload 1 (rotate-34kx128w1) Composition:  

► 1 worker 

Image Rotation: 

• Input image: 33823 pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed description. 

Image Details: 

• 227 x 149 Pixels. 

• 8 bits per pixel. 

• 146 unique shades of grey. 

 
NOTE: The images are copies of the same input image.  

 

  



 

 MultiBench Algorithms and Workload Datasheets Page 56 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-34kx512-90deg 
Description: This workload rotates 512 34k greyscale images by 90 deg clockwise, 
64 lines at a time (slice size = 64). Total input size is 17M. 

Workload 1 (rotate-34kx512-90deg) Composition:  

► 2 workers 

Image Rotation: 

• Input image: 33823 pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed kernel description. 

Image Details: 

• 227 x 149 Pixels 

• 8 bits per pixel. 

• 146 unique colors 

 
NOTE: The images are copies of the same input image.  



 

 MultiBench Algorithms and Workload Datasheets Page 57 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-4Msx Variations 
Description: This workload rotates greyscale images by 90 deg, variable number 
of lines. Image size is 4M. All work items have a working set size of ~4M.  

Workload 1 (rotate-4Ms1) Composition: 

► 1 instance of rotate, 4M, slice size is 1, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-4Ms1w1) Composition: 

► 1 instance of rotate, 4M, slice size is 1, 1 worker 

Workload 3 (rotate-4Ms32 Composition:  

► 1 instance of rotate, 4M, slice size is 32, flexible number of workers 

(Run rules: This workload must be run with only one context active (-c1) but 
number of workers may be changed (-w<N>).) 

Workload 4 (rotate-4Ms32w1) Composition: 

► 1 instance of rotate, 4M, slice size is 32, 1 worker 

Workload 5 (rotate-4Ms4) Composition:  

► 1 instance of rotate, 4M, slice size is 4, flexible number of workers 

(Run rules: This workload must be run with only one context active (-c1) but 
number of workers may be changed (-w<N>).) 

Workload 6 (rotate-4Ms4w1) Composition: 

► 1 instance of rotate, 4M, slice size is 4, 1 worker 

Workload 7 (rotate-4Ms64) Composition: 

► 1 instance of rotate, 4M, slice size is 64, flexible number of workers 

(Run rules: This workload must be run with only one context active (-c1) but 
number of workers may be changed (-w<N>).) 

Workload 8 (rotate-4Ms64w1) Composition: 

► 1 instance of rotate, 4M, slice size is 64, 1 worker 



 

 MultiBench Algorithms and Workload Datasheets Page 58 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Image Rotation: 

• Input image: 4 Mega Pixels, Greyscale. 

• Operation: 90deg clockwise rotation 

• See Image Rotation for more detailed description. 

 
Image Details: 2272 x 1704 Pixels; 4:3 ratio with 8 bits per pixel. 



 

 MultiBench Algorithms and Workload Datasheets Page 59 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-color-4M-90deg Variations 
Description: This workload rotates 1 4Mpixels color image 90 deg clockwise.  

Workload 1 (rotate-color-4M-90deg) Composition: 

► 1 instance of rotate, 12M input (4 Mpixels at RGB), flexible number of 
workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-color-4M-90degw1) Composition: 

► 1 instance of rotate, 12M input (4 Mpixels at RGB), 1 worker 

Image Rotation: 

• Input image: 12 Mega Pixels, Greyscale 

• Operation: 90deg clockwise rotation 

• Slice size: 32 

• See Image Rotation for more detailed description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 24 bits per pixel. 

• 159185 unique colors 

 
NOTE: The images are copies of the same input image.  



 

 MultiBench Algorithms and Workload Datasheets Page 60 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

rotate-color1Mp Variations 
Description: This workload rotates greyscale images by 90deg. Image size is ~1M 
pixels in color. All work items have a working set size of ~4M.  

Workload 1 (rotate-color1Mp) Composition: 

► 1 instance of rotate, 1Mp color image, flexible number of workers 

(Run with only one context active (-c1) but variable number of workers (-w<N>).) 

Workload 2 (rotate-color1Mpw1) Composition: 

► 1 instance of rotate, 1Mp color image, 1 worker 

Image Rotation: 

• Input image: 1 Mega Pixels, color. 

• Operation: 90deg clockwise rotation, slice size is 1. 

• See Image Rotation for more detailed description. 

Image Details: 

• 2272 x 1704 Pixels  

• 4:3 ratio with 8 bits per pixel. 

  



 

 MultiBench Algorithms and Workload Datasheets Page 61 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Consumer Workloads 

4M-rotatew2.keys  
4M-x264w2.keys  
64M-rotatew2.keys  
64M-x264-1worker.keys  
64M-x264-2workers.keys  
64M-x264-4workers.keys  
64M-x264-8workers.keys  
consumer_v2-cjpeg.keys  
consumer_v2-djpeg.keys  
consumer_v2-mp3player.keys  
empty.keys  
empty-wld.keys  
filters_v2-common.keys  
filters_v2-rgbhpg03.keys  
filters_v2-rgbyiq03.keys  
filters-rgbhpg01.keys  
filters-rgbyiq01.keys  
huffde.keys  
huffde-all.keys  
md5.keys  
md5-128M16worker.keys  
md5-128M1worker.keys  
md5-128M2worker.keys  
md5-128M4worker.keys  
md5-1M16worker.keys  
md5-1M1worker.keys  
md5-1M2worker.keys  
md5-1M4worker.keys  
md5-32M.keys  
md5-32M16worker.keys  
md5-32M1worker.keys  
md5-32M2worker.keys  
md5-32M4worker.keys  
md5-4M.keys  
md5-4Mw1.keys  
mp2decode1.keys  
mp2decode2.keys  
mpeg2-90Mout-1worker.keys  
mpeg2-90Mout-2workers.keys  
mpeg2-90Mout-4workers.keys  
mpeg2-90Mout-8workers.keys  
mpeg2-base.keys  
oa-rotatev2.keys  
rotate-16x4Ms1.keys  
rotate-16x4Ms1w1.keys  
rotate-16x4Ms1w2.keys  
rotate-16x4Ms1w32.keys  

rotate-16x4Ms1w4.keys  
rotate-16x4Ms1w8.keys  
rotate-16x4Ms32.keys  
rotate-16x4Ms32w1.keys  
rotate-16x4Ms32w2.keys  
rotate-16x4Ms32w4.keys  
rotate-16x4Ms32w8.keys  
rotate-16x4Ms4w1.keys  
rotate-16x4Ms4w2.keys  
rotate-16x4Ms4w4.keys  
rotate-16x4Ms4w8.keys  
rotate-16x4Ms64.keys  
rotate-16x4Ms64w1.keys  
rotate-34k-180deg.keys  
rotate-34k-270deg.keys  
rotate-34k-90deg.keys  
rotate-34kX128w1.keys  
rotate-34kX16-90deg.keys  
rotate-34kX512-90deg.keys  
rotate-4M-180deg.keys  
rotate-4M-270deg.keys  
rotate-4M-90deg.keys  
rotate-4Ms1.keys  
rotate-4Ms1w1.keys  
rotate-4Ms32.keys  
rotate-4Ms32w1.keys  
rotate-4Ms4.keys  
rotate-4Ms4w1.keys  
rotate-4Ms64.keys  
rotate-4Ms64w1.keys  
rotate-520k-180deg.keys  
rotate-520k-270deg.keys  
rotate-520k-90deg.keys  
rotate-520kX16-90deg.keys  
rotate-color1Mp.keys  
rotate-color1Mpw1.keys  
rotate-color-4M-90deg.keys  
rotate-color-4M-90degw1.keys  
video-mp2decode.keys  
video-x264.keys  
x264-4M.keys  
x264-4Mw1.keys  
x264-64M.keys  
x264-90M-1worker.keys  
x264-90M-2workers.keys  
x264-90M-4workers.keys  
x264-base.keys 

  



 

 MultiBench Algorithms and Workload Datasheets Page 62 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Networking Workloads 

4M-check.keys  
4M-check-reassembly.keys  
4M-check-reassembly-tcp.keys  
4M-reassembly.keys  
4M-tcp-mixed.keys  
64M-check-reassembly.keys  
64M-check-reassembly-tcp.keys  
64M-tcp-mixed.keys  
empty.keys  
empty-wld.keys  
ippktcheck-4M.keys  
ippktcheck-4Mw1.keys  
ippktcheck-64M.keys  
ippktcheck-64M-1Worker.keys  
ippktcheck-64M-2Worker.keys  
ippktcheck-8x4M-1Worker.keys  
ippktcheck-8x4M-4Worker.keys  
ipres-100M10worker.keys  
ipres-100M1worker.keys  
ipres-100M2worker.keys  
ipres-100M4worker.keys  
ipres-4M.keys  
ipres-4Mw1.keys  
ipres-6M1worker.keys  
ipres-6M4worker.keys  
ipres-72M.keys  
ipres-72M1worker.keys  
ipres-72M2worker.keys  
 

md5.keys  
md5-128M16worker.keys  
md5-128M1worker.keys  
md5-128M2worker.keys  
md5-128M4worker.keys  
md5-1M16worker.keys  
md5-1M1worker.keys  
md5-1M2worker.keys  
md5-1M4worker.keys  
md5-32M.keys  
md5-32M16worker.keys  
md5-32M1worker.keys  
md5-32M2worker.keys  
md5-32M4worker.keys  
md5-4M.keys  
md5-4Mw1.keys  
networking-ippktcheck.keys  
networking-ipres.keys  
networking-tcp.keys  
tcpbase.keys  
tcp-bulk_x1G.keys  
tcp-jumbo_x1G.keys  
tcp-mixed_x1G.keys 

 

 



 

 MultiBench Algorithms and Workload Datasheets Page 63 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

Office Automation Workloads 

4M-cmykw2.keys  
4M-cmykw2-rotatew2.keys  
4M-rotatew2.keys  
64M-cmykw2.keys  
64M-cmykw2-rotatew2.keys  
64M-rotatew2.keys  
empty.keys  
empty-wld.keys  
filters_v2-common.keys  
filters_v2-rgbcmyk03.keys  
oa-rotatev2.keys  
rgbcmyk-12M2workers.keys  
rgbcmyk-4M.keys  
rgbcmyk-4Mw1.keys  
rgbcmyk-5x12M.keys  
rgbcmyk-5x12M1workers.keys  
rgbcmyk-5x12M2workers.keys  
rgbcmyk-5x12M4workers.keys  
rgbcmyk-5x12M8workers.keys  
rotate-16x4Ms1.keys  
rotate-16x4Ms1w1.keys  
rotate-16x4Ms1w2.keys  
rotate-16x4Ms1w32.keys  
rotate-16x4Ms1w4.keys  
rotate-16x4Ms1w8.keys  
rotate-16x4Ms32.keys  
rotate-16x4Ms32w1.keys  
rotate-16x4Ms32w2.keys  
rotate-16x4Ms32w4.keys  
rotate-16x4Ms32w8.keys  
rotate-16x4Ms4w1.keys  
 

rotate-16x4Ms4w2.keys  
rotate-16x4Ms4w4.keys  
rotate-16x4Ms4w8.keys  
rotate-16x4Ms64.keys  
rotate-16x4Ms64w1.keys  
rotate-34k-180deg.keys  
rotate-34k-270deg.keys  
rotate-34k-90deg.keys  
rotate-34kX128w1.keys  
rotate-34kX16-90deg.keys  
rotate-34kX512-90deg.keys  
rotate-4M-180deg.keys  
rotate-4M-270deg.keys  
rotate-4M-90deg.keys  
rotate-4Ms1.keys  
rotate-4Ms1w1.keys  
rotate-4Ms32.keys  
rotate-4Ms32w1.keys  
rotate-4Ms4.keys  
rotate-4Ms4w1.keys  
rotate-4Ms64.keys  
rotate-4Ms64w1.keys  
rotate-520k-180deg.keys  
rotate-520k-270deg.keys  
rotate-520k-90deg.keys  
rotate-520kX16-90deg.keys  
rotate-color1Mp.keys  
rotate-color1Mpw1.keys  
rotate-color-4M-90deg.keys  
rotate-color-4M-90degw1.keys 



 

 MultiBench Algorithms and Workload Datasheets Page 64 of 65 

Embedded 
Microprocessor 

Benchmark 
Consortium 

 

www.eembc.org 

 Networking/Consumer Combined Workloads 

4M-check-reassembly-tcp-x264w2  
64M-check-reassembly-tcp-h264w2 
 
4M-check-reassembly-tcp-cmykw2-rotatew2 
64M-check-reassembly-tcp-cmykw2-rotatew2 

 


	Table Of Contents
	Introduction
	MultiBench 1.0e: The Official Release Version
	MultiMark
	ParallelMark
	MixMark

	MultiBench Architect
	MultiBench Algorithms 
	Consumer: MD5
	Consumer: H.264
	General: iDCT
	Office Automation: RGB to CMYK Conversion
	Image Rotation
	Networking - IP Packet Check
	Networking - IP Reassembly
	Networking - Transmission Control Protocol (TCP)

	Workload Descriptions
	ippktcheck-4M
	ipres-4M Variations
	4M-check-reassembly
	4M-tcp-mixed
	4M-check-reassembly-tcp
	4M-cmykw2
	4M-rotatew2
	4M-cmykw2-rotatew2
	4M-check-reassembly-tcp-cmykw2-rotatew2
	x-4M Variations
	4M-check-reassembly-tcp-x264w2
	ippktcheck-64M Variations
	64M-check-reassembly
	64M-check-reassembly-tcp
	64M-cmykw2
	64M-rotatew2
	64M-cmykw2-rotatew2
	64M-check-reassembly-tcp-cmykw2-rotatew2
	64M-x264 Variations
	64M-check-reassembly-tcp-h264w2
	iDCT-4M Variations
	ipres-72M
	md5-32M Variations
	md5-4M Variations
	rgbcmyk-4M Variations
	rgbcmyk-5x12M Variations
	rotate-16x4Ms1 Variations
	rotate-16x4Ms32 Variations
	rotate-16x4Ms4 Variations
	rotate-16x4Ms64 Variations
	rotate-34kx128w1
	rotate-34kx512-90deg
	rotate-4Msx Variations
	rotate-color-4M-90deg Variations
	rotate-color1Mp Variations
	Consumer Workloads
	Networking Workloads
	Office Automation Workloads
	Networking/Consumer Combined Workloads


