
developers face similar quandaries when making trade-offs
with multicore processors. Even if a dual-core processor
appears to be better than a single-core processor, how much
better is it? Twice as good? Would a quad-core processor be
four times better? Are more cores worth the additional cost,
design complexity, power consumption, and programming
difficulty?

The Embedded Microprocessor Benchmark Consor-
tium (EEMBC) wants to help answer those questions.
EEMBC’s MultiBench 1.0 is a new benchmark suite for
measuring the throughput of multiprocessor systems,
including those built with multicore processors. MultiBench
is EEMBC’s biggest launch since introducing the Energy-
Bench power-consumption benchmarks two years ago. (See
MPR 7/17/06-02, “EEMBC Energizes Benchmarking.”)

[Full disclosure: EEMBC was founded and is headed
by Markus Levy, a former Microprocessor Report technology
analyst and a current member of the MPR Editorial Board.]

EEMBC’s Evolution: More Than Scores
Since its inception in 1997, EEMBC’s mission has been to
produce benchmarks for embedded processors, not for PC
or server CPUS. In keeping with that mission, the Multi-
Bench suite consists of compute-intensive tasks commonly
performed by networking equipment, office equipment
(especially printers), and consumer-electronics products.
Although EEMBC benchmarks may be considered artificial
in that they aren’t complete applications, they perform func-
tions extracted or adapted from real-world applications.

EEMBC’s role has evolved over the years, and Multi-
Bench is another step. Originally, EEMBC was conceived as an
independent entity that would create benchmark suites and
certify the scores for accuracy, allowing vendors and customers
to make valid comparisons among embedded microproces-
sors. (See MPR 5/1/00-02, “EEMBC Releases First Bench-
marks.”) EEMBC still serves that role. But, as it turns out, most
EEMBC members don’t openly publish their scores. Instead,
they disclose scores to prospective customers under an NDA or
use the benchmarks for internal testing and analysis.

Partly for this reason, MPR rarely cites EEMBC scores
in articles. EEMBC forbids members to publicly release
their scores without EEMBC’s independent certification.
Another reason for the scarcity of EEMBC scores in MPR is
they’re usually not available for the processors we write
about—processors that aren’t available yet. And even if more
EEMBC scores were available, some engineers remain suspi-
cious of any attempts to distill microprocessor performance
into a few numbers. (See MPR 8/30/04-01, “Benchmarking
the Benchmarks.”)

MultiBench seems to be moving in the same general
direction as other EEMBC benchmarks—away from pub-
lished scores, closer to private testing. Although some EEMBC
members have been using early versions of MultiBench for six
months, no member is near to releasing certified MultiBench
scores. MPR suspects that MultiBench will find its niche
primarily as an analysis tool for internal testing and closed-
door sales pitches, not as a source for widely publicized
benchmark comparisons.

EEMBC’S MULTIBENCH ARRIVES
CPU Benchmarks: Not Just For ‘Benchmarketing’ Any More

By Tom R. Halfhi l l {7/28/08-01}

Imagine a world without measurements or statistical comparisons. Baseball fans wouldn’t

fail to notice that a .300 hitter is better than a .100 hitter. But would they welcome a trade

that sends the .300 hitter to Cleveland for three .100 hitters? System designers and software

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

Article Reprint

That’s not all bad. Although published scores make for
interesting “benchmarketing,” what the industry sorely needs
is a technically valid method for evaluating the performance
of multicore processors. Within its limitations, MultiBench
meets that need.

New Concept: Work Items and Workloads
EEMBC adapted most tasks in MultiBench from existing
EEMBC suites, in addition to writing entirely new tasks.
Code reuse saved development time and made sense, because
multicore embedded processors generally perform the same
application-level tasks as single-core embedded processors.
Tasks were created or ported by EEMBC members and by the
EEMBC Technology Center and its director of software
engineering, Shay Gal-On.

Previously, EEMBC referred to the benchmark tasks in
each suite as “kernels”—a somewhat confusing term, because
they aren’t related to operating-system kernels. In EEMBC
parlance, a kernel is simply an algorithm or routine that
performs a common task found in real-world embedded soft-
ware. Now EEMBC is using new terminology. MultiBench
tasks are called “workloads,” which may include one or more
“work items.” Work items are similar to the kernels of old,
because they mate algorithms with sample datasets on which
the algorithms operate.

For example, one MultiBench workload is 64M-cmykw2.
It has a single work item: a color-conversion routine that
transforms four 12-megapixel images from the RGB color
space to the CMYK color space. Another single-item Multi-
Bench workload is 64M-rotatew2, an image-rotation routine
that operates on four 12-megapixel images, turning each one
90 degrees clockwise. And another MultiBench workload is
64M-cmykw2-rotatew2, which combines the color-conversion
and rotation workloads to create a two-item workload. In
all, MultiBench 1.0 has 36 workloads, some of which are
combinations of work items in other workloads.

There’s another twist. Work items may be single
threaded or may decompose the data for processing by multi-
ple threads. This variation allows MultiBench to test data-
level parallelism within a single work item as well as thread-
level parallelism among multiple work items. The grand
concept is a little difficult to grasp at first, but it allows for a
great variety of possible workloads. A MultiBench workload
may consist of a single work item; two or more instances of
the same work item, operating on different datasets; two or
more different work items; and work items that are single-
or multithreaded. Figure 1 illustrates this concept.

EEMBC chose the 36 workloads in MultiBench 1.0 to
keep things relatively simple. Actually, EEMBC has ported
almost all the kernels in existing EEMBC suites to function as
MultiBench workloads. Including all these workloads in
MultiBench 1.0 would have overwhelmed benchmark testers.
For scoring purposes, if nothing else, it’s better to limit the
number of workloads to a manageable number. For now,
MultiBench departs from the usual EEMBC practice of sorting

tasks into application-oriented categories of benchmark
suites (Networking, Consumer, Telecom, etc.). MultiBench
1.0 is a unified suite that doesn’t specialize by application
domain. Specialized suites will come in the future.

Creating Custom Workloads
Although MultiBench 1.0 defines 36 workloads, EEMBC
members and MultiBench licensees can create their own cus-
tom workloads by selectively choosing work items and chang-
ing the parameters of the items. Almost all MultiBench work
items can operate on different datasets with adjustable levels
of threading. Testers can substitute their own datasets, too.

Custom workloads aren’t valid for MultiBench scoring,
but they allow testers to create a virtually infinite variety of
workloads, even when using the standard EEMBC datasets.
Testers can exercise processors and systems to identify
strengths and weaknesses or to compare the performance of
multicore processors with that of single-core processors. Engi-
neers can test the effectiveness of multithreading at different
levels: time-sliced on a single processor or distributed among
multiple processors.

To help testers assemble the workloads, EEMBC offers
new tools. Figure 2 is a screen shot of the Workload Creator,
which lets users choose work items from a list. Items available
in the list depend on which workloads the tester has
licensed. In addition, testers can build their own work items
from scratch and link them into the Workload Creator by
implementing a special application programming interface
(API). Workload Creator is part of MultiBench Architect, an
optional tool. EEMBC’s technical documentation explains
the function of each work item and shows its adjustable
parameters, such as the number of possible threads and the
official EEMBC datasets approved for use with the item.

Because MultiBench allows a variable number of work
items to run simultaneously, the number of simultaneous
threads is also variable. And some multithreaded work items
operate on multiple slices of data—potentially, another
adjustable parameter. When porting existing kernels to
MultiBench, EEMBC made other improvements as well, such
as modifying the algorithms to mirror the latest application
trends and changing the sample data to reflect the larger
datasets crunched by today’s systems. In all these ways,
MultiBench is more than simply a multiprocessing version
of existing EEMBC benchmarks. At every level, EEMBC has
updated the tasks to better represent the progress of real-
world embedded software.

Inside the MultiBench Suite
Existing benchmark suites from which EEMBC derived the
MultiBench workloads include Networking 2.0, Office
Automation 2.0, and Digital Entertainment 1.0. As mentioned
above, EEMBC has ported almost all the tasks in all the
suites—including Automotive 1.1 and Telecom 1.1—but is
using only a subset of them in MultiBench 1.0. Future releases
of MultiBench will have more workloads. In addition to

2

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

3

porting tasks from the existing benchmark suites, EEMBC
wrote 11 new MultiBench workloads from scratch. Table 1
lists all 36 workloads in MultiBench 1.0.

Although EEMBC adapted most MultiBench workloads
from existing kernels in other EEMBC suites, the origin of a
workload doesn’t necessarily define the scope of its usefulness.
Some tasks are applicable to multiple embedded applications
that seem unrelated. For instance, the work items for packet
checking and reassembly originate from the Networking 2.0
suite, because they perform packet-processing functions
common in network routers. But those same work items are
relevant to networked printers, which ordinarily would be
represented by kernels in the Office Automation suite.

Because EEMBC modified the existing kernels when
porting them to MultiBench, the benchmark scores of the
old and new versions aren’t directly comparable. In other
words, it’s not valid to compare the score of a particular
MultiBench workload with the score of its original kernel
before it was ported to MultiBench. To find a baseline of
single-core performance for comparisons with multicore
performance, testers can run the MultiBench version of a
work item as a single thread on a single core or run the
workload as multiple time-sliced threads on a single core.
Most MultiBench workloads can execute as a single thread
on one core, as multiple threads on one core, or as multiple
threads on multiple cores.

New API Resembles Posix Threading
EEMBC implemented threading in the MultiBench workloads
by creating an API that closely resembles the well-known API

for Posix “pthreads.” Although the MultiBench API isn’t
identical to the Posix pthread API, it should be easy to run
MultiBench on any Posix-compliant operating system by
mapping the MultiBench API calls to corresponding calls in
the Posix API.

The MultiBench API has 13 essential calls for threading.
It will run on any system software that supports the minimum
requirements of thread creation, thread scheduling, thread
signaling, mutexes, and thread destruction. Even a roll-your-
own substitute for a commercial operating system—a popu-
lar alternative in the embedded world—can run MultiBench
by implementing those 13 API calls, or by mapping them to
another threading API.

Requirements for the thread scheduler are equally
flexible. The scheduler can be smart enough to assign differ-
ent priorities to threads, or so dumb that it juggles multiple
threads in simple round-robin fashion. The MultiBench
API optionally supports “affinity”—associating a particular
thread with a particular processor core.

Thread signaling, another requirement of the Multi-
Bench API, allows a program to awaken an idle thread—a crit-
ical feature for priority scheduling. Mutexes provide mutually
exclusive access to data, preventing multiple threads from
changing the same memory location at the same time. To
implement a mutex, the processor must have an atomic test-
and-set operation protected from interrupts. Many embed-
ded processors have this capability. For instance, Freescale
Semiconductor recently enhanced the Power e500mc
processor core by adding an atomic read-modify-write oper-
ation. (See the sidebar, “The New, Improved Power e500mc

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

Figure 1. MultiBench 1.0 introduces the concept of work items and
workloads instead of kernels. In this figurative example, the workload
includes three work items. Items A0 and A1 execute the same routine
(kernel) on different datasets, and both items are single threaded. Work
item B0 contains a different kernel that decomposes its dataset in a
manner that allows four threads to operate on the data simultaneously.
Therefore, this combined workload contains three work items testing
three levels of parallelism: thread-level parallelism among disparate
work items (A0, A1, and B0); thread-level parallelism among two
instances of the same work item, operating on different data (A0 and
A1); and data-level parallelism within a single work item (B0).

Figure 2. EEMBC’s Workload Creator—part of the optional Multi-
Bench Architect tool—allows testers to pick MultiBench work items
from the list on the left and add them to the workload list on the
right. Each combination of a routine and a dataset is a work item in
the workload. An XML-based definition file encapsulates the work
items, links them into the Workload Creator, and allows testers to
visualize the components of a workload.

4

Processor Core,” in MPR 7/7/08-01, “Freescale’s Multicore
Makeover.”)

Note that the MultiBench API supports symmetric
multiprocessing (SMP), not asymmetric multiprocessing
(AMP). Although this may be viewed as a limitation, it’s not
practical for the same benchmark tasks to support both styles
of multiprocessing in a meaningful way. EEMBC says future
versions of MultiBench may support AMP in some fashion.
Until then, MultiBench 1.0 is geared toward homogeneous
multicore processors that integrate multiple instances of the
same CPU core, not heterogeneous designs that integrate
multiple cores having different CPU architectures or
microarchitectures. AMP benchmarks would definitely be
desirable. EEMBC’s domain is embedded processors, which
(so far) are more likely to integrate diverse cores than PC or
server processors do.

Multiple Methods for Composite Scores
With all MultiBench work items, the raw score is the number
of iterations per second, so higher numbers are better. The
same is true for the kernels in other EEMBC benchmark suites.
For those suites, EEMBC also reports a composite score by
calculating the geometric mean of the raw scores. EEMBC
names those composite scores after their suites: Consumer-
Mark, TeleMark, AutoMark, and so on. While MPR was
preparing this article, EEMBC was finishing the process of
defining and naming a composite MultiBench score.

In fact, it looks like MultiBench will have three com-
posite scores, all derived from geometric means of raw scores.
These composite scores can describe raw throughput (work-
load iterations per second) and performance scaling (the
degree of improvement in throughput when the workload
runs on more threads or processors). Performance scaling

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

Table 1. EEMBC MultiBench 1.0 workloads and the existing EEMBC benchmark suites (if any) from which they were adapted. Notice that several
workloads are based on the same work item but vary the datasets, the manner in which the datasets are manipulated, or the number of simultaneous
threads supported. In EEMBC nomenclature, “64M” indicates the total size of the sample data manipulated by a workload (64MB), and “w2” indicates
that two threads or “workers” do the processing.

MultiBench Workloads Workload Description Notes Existing EEMBC Suite
64M-check-reassembly Check and reassemble IP packets 64MB input (81,460 packets) Networking 2.0
64M-check-reassembly-tcp Check and reassemble TCP-IP packets 64MB input (81,460 packets) Networking 2.0
64M-check-reassembly- Check and reassemble TCP-IP packets, Simulates compressing and

tcp-h264w2 compress six H.264 video streams sending video over network
Check and reassemble TCP-IP packets, Simulates 4 grayscale images

convert 12MP grayscale image RGB - CMYK, sent over network to printer, Networking 2.0
rotate image 90° clockwise rotated to landscape

64M-tcp-mixed TCP transfer processing 64MB data, 1 thread Networking 2.0
ippktcheck-64M-1Worker IP packet header check (RFC1812) 64MB input, 1 thread Networking 2.0
ipres-72M1worker Reassemble 297,859 IP fragments 72MB input, 1 thread Networking 2.0
ipres-72M2worker Reassemble 297,859 IP fragments 72MB input, 2 threads Networking 2.0

Rotate four 12MP images 90° clockwise, Printer simulation, 64MB data,
convert RGB - CMYK color space 2 threads per operation

64M-rotatew2 Rotate four 12MP images 90° clockwise 2 threads on 4 instances New workload
64M-cmykw2 Convert four 12MP images RGB - CMYK 2 threads on 4 instances Digital Entertainment
md5-32M1worker Calculate MD5 (Message Digest 5) checksum 32MB buffer input, 1 thread New workload
md5-32M2worker Calculate MD5 (Message Digest 5) checksum 32MB buffer input, 2 threads New workload
md5-32M4worker Calculate MD5 (Message Digest 5) checksum 32MB buffer input, 4 threads New workload
rotate-color-4M-90deg Rotate 4MP color image 90° clockwise 12MB data, 2 threads New workload
rotate-34kX512-90deg Rotate 512 images 90° clockwise 34KB images, 2 threads New workload
rgbcmyk-5x12M1workers Convert 12MP grayscale image RGB - CMYK Five images, 1 thread each Digital Entertainment
rgbcmyk-5x12M2workers Convert 12MP grayscale image RGB - CMYK Five images, 2 threads each Digital Entertainment
rgbcmyk-5x12M4workers Convert 12MP grayscale image RGB - CMYK Five images, 4 threads each Digital Entertainment
rgbcmyk-5x12M8workers Convert 12MP grayscale image RGB - CMYK Five images, 8 threads each Digital Entertainment
rotate-16x4Ms1w1 Rotate 16 images 90° clockwise, 1 line/pass 4MB images, 1 thread Digital Ent. and OA
rotate-16x4Ms1w2 Rotate 16 images 90° clockwise, 1 line/pass 4MB images, 2 threads Digital Ent. and OA
rotate-16x4Ms1w4 Rotate 16 images 90° clockwise, 1 line/pass 4MB images, 4 threads Digital Ent. and OA
rotate-16x4Ms1w8 Rotate 16 images 90° clockwise, 1 line/pass 4MB images, 8 threads Digital Ent. and OA
rotate-16x4Ms32w1 Rotate 16 images 90° clockwise, 32 lines/pass 4MB images, 1 thread Digital Ent. and OA
rotate-16x4Ms32w2 Rotate 16 images 90° clockwise, 32 lines/pass 4MB images, 2 threads Digital Ent. and OA
rotate-16x4Ms32w4 Rotate 16 images 90° clockwise, 32 lines/pass 4MB images, 4 threads Digital Ent. and OA
rotate-16x4Ms32w8 Rotate 16 images 90° clockwise, 32 lines/pass 4MB images, 8 threads Digital Ent. and OA
rotate-16x4Ms4w1 Rotate 16 images 90° clockwise, 4 lines/pass 4MB images, 1 thread Digital Ent. and OA
rotate-16x4Ms4w2 Rotate 16 images 90° clockwise, 4 lines/pass 4MB images, 2 threads Digital Ent. and OA
rotate-16x4Ms4w4 Rotate 16 images 90° clockwise, 4 lines/pass 4MB images, 4 threads Digital Ent. and OA
rotate-16x4Ms4w8 Rotate 16 images 90° clockwise, 4 lines/pass 4MB images, 8 threads Digital Ent. and OA
64M-x264-1worker Encode 6 video streams (64MB total) to H.264 3 streams x 2 instances x 1 thread New workload
64M-x264-2workers Encode 6 video streams (64MB total) to H.264 3 streams x 2 instances x 2 threads New workload
64M-x264-4workers Encode 6 video streams (64MB total) to H.264 3 streams x 2 instances x 4 threads New workload
64M-x264-8workers Encode 6 video streams (64MB total) to H.264 3 streams x 2 instances x 8 threads New workload

Networking 2.0

64M-check-reassembly-
 tcp-cmykw2-rotatew2

64M-cmykw2-rotatew2 New workload

5

will be of particular interest to engineers evaluating the effi-
ciency of multicore processors in comparison with proces-
sors that are less well endowed.

One composite MultiBench score will be the Single-
WorkerMark. It measures the throughput of workloads hav-
ing only one work item and one worker (thread). Of the 36
workloads in MultiBench 1.0, eight workloads fit this
description. One example is 64M-x264-1worker, which
encodes six video streams in H.264 format. EEMBC will take
the best throughput score (iterations per second) for each of
the eight workloads, calculate the geometric mean, and mul-
tiply the result by ten. The multiplication factor is arbitrary—
it merely makes the SingleWorkerMark score easier to read.

Another composite MultiBench score is the Multi-
WorkerMark. It measures the throughput of workloads hav-
ing only one work item with multiple threads. Twenty of the
36 workloads in MultiBench 1.0 fit this description. One
example is md5-32M4worker, which calculates Message
Digest 5 (MD5) checksums on 32MB of data, using four
threads. EEMBC will take the best throughput score for each
of the 20 workloads in this subset, calculate the geometric
mean, and multiply the result by ten. (Again, the multiplica-
tion factor is a convenience.)

The third composite MultiBench score is the Multi-
ItemMark. It measures the throughput of workloads having
two or more different work items, which may be single- or
multithreaded. Because these workloads perform multiple
related tasks, they are closer to real-world programs. Eleven
of the 36 workloads in MultiBench 1.0 fit this description.
One example is 64M-check-reassembly-tcp-h264, which sim-
ulates the task of compressing and sending six video streams
over a network. It has four work items that check the packet
headers, reassemble fragments of the Internet Protocol
packets, perform Transmission Control Protocol (TCP)
processing on the packets, and encode the six video streams
into H.264 format.

Performance Scaling With MultiBench
To measure performance scaling, EEMBC starts with each
composite throughput score: the SingleWorkerMark, Multi-
WorkerMark, and MultiItemMark. Then, EEMBC takes the
geometric mean of workload throughputs when only one
work item is enabled at a time. (This number should be
greater than the geometric mean of workload throughputs
with all work items enabled.) Finally, EEMBC divides the
SingleWorkerMark, MultiWorkerMark, and MultiItemMark
scores by those numbers. The results are the scale factors. If
performance scales linearly, a scale factor rises in step with
the additional number of processor cores.

For example, Table 2 shows the results of running Multi-
Bench on two different dual-core processors clocked at
2.0GHz. By comparing the throughput scores of these proces-
sors, it’s clear that CPU #1 is at least 50% faster than CPU #2.
By comparing the scale factors with each processor’s own
throughput scores, we can see that CPU #1 is slightly better

than CPU #2 at scaling its performance. Indeed, CPU #1 comes
close to the ideal scale factor of 2.0 for a dual-core processor.

EEMBC is continuing its practice of allowing “out-of-the-
box” and “optimized” scores, but the rules have been tightened.
To obtain an out-of-the-box score, testers must compile the
kernels without modifying the source code, use a publicly avail-
able compiler, and disclose the compiler-optimization flags
applied. These rules are the same as before. To obtain an opti-
mized or “full-fury” score, testers can modify the source code,
but they must disclose the modifications and limit them to
regions of source code approved by EEMBC. Previously, the
rules didn’t restrict the modifications to specific regions of code.

Off limits are regions of source code that verify data
input and output. EEMBC wants to ensure that cheaters
won’t simplify the prescribed datasets or perform less work
on the data than EEMBC requires. These rules and others are
enforced by the EEMBC Technology Center, which checks
and verifies the benchmark results submitted by EEMBC
members. Only after the test results pass verification does
EEMBC certify the scores. Certification is required before
EEMBC members can openly publish scores. Without it, a
member can privately disclose the scores to prospective cus-
tomers under an NDA only. (Certification used to cost a few
thousand dollars, but now it’s free.)

As before, optimized scores can reflect almost any tech-
nique used in real-world software development. Testers can
improve the C source code of a kernel, substitute assembly-
language code for high-level C code, and use any hardware
accelerators that may be part of the processor’s design. For
instance, some processors have hardware acceleration for
video compression and decompression, which should
markedly improve performance when running the H.264
kernels. One limitation is that the acceleration logic must be
automatically invoked by the processor or callable through
an API, because MultiBench 1.0 doesn’t support AMP on
heterogeneous processors.

Emphasis on Network and Image Processing
As Table 1 shows, the initial workloads that EEMBC chose
for MultiBench 1.0 emphasize packet processing, still-image

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

Table 2. MultiBench composite scores and multicore scale factors for
two different dual-core processors. This comparison shows that CPU #1
is significantly faster than CPU #2 when running the MultiBench work-
loads in these three composite groups. In addition, CPU #1 does a bet-
ter job of scaling performance when using both its cores. The ideal scale
factor for a dual-core processor would be 2.0. (Data source: EEMBC.)

MultiBench Composite CPU #1 CPU #2

SingleWorkerMark 33.3 24.7
MultiWorkerMark 24.8 13.8
MultiItemMark 11.8 7.2

SingleWorkerMark 1.9 1.8
MultiWorkerMark 1.9 1.7
MultiItemMark 1.7 1.5

Throughput Performance

Dual-Core Scale Factor

6

processing, and video processing. Absent are the somewhat
mundane tasks found in the Automotive suite, which are
also more typical of industrial applications. As with any
industry consortium, there was a great deal of discussion in
the technical subcommittees about which kernels to include
or exclude in MultiBench. The initial emphasis is on higher-
level tasks performed by sexier embedded systems, not the
lower-level jobs carried out by machine controllers and
other humdrum equipment.

There are several reasons for this emphasis. Sophisti-
cated embedded systems are more likely to have multicore
processors; many low-level tasks don’t lend themselves to
multiprocessing; higher-level tasks are becoming more
widespread; and the 36 workloads in MultiBench 1.0 already
generate a prodigious amount of data to analyze. In addition,
EEMBC has a somewhat different objective for MultiBench.
Whereas existing EEMBC suites measure performance
within particular application domains, MultiBench meas-
ures the degree of performance scaling achievable with
multiprocessing.

That said, the workloads in MultiBench 1.0 are repre-
sentative of today’s embedded software. Network connectivity,
for instance, is becoming a must-have feature in all kinds of
products. Packet processing is as important for a networked
printer or a voice-over-IP (VoIP) phone as it is for a network
router, so the packet-checking routines in MultiBench 1.0 are
very relevant. Likewise, growing numbers of embedded sys-
tems manipulate still images or video streams. It makes
sense for MultiBench to include work items for image rota-
tion, color-space conversions, and H.264 video encoding.

During the selection process, EEMBC ported almost all
the kernels in all the EEMBC suites to several different proces-
sors. The performance of some workloads scaled to a similar
degree on all processors, whereas other workloads behaved
quite differently. EEMBC strove for diversity, choosing some
workloads from each group. EEMBC decided to limit the
initial release of MultiBench to the 36 workloads in Table 1
because it’s a manageable list, yet there’s enough flexibility to
create numerous workloads. Future releases of MultiBench
could add most or all the remaining kernels and sort them
into the familiar application categories. Meanwhile, all the
ported workloads are available to EEMBC members,
although they haven’t been fully tested and aren’t valid for
MultiBench scoring and certification.

Less Benchmarketing, More Analysis
Even before EEMBC introduced MultiBench, the number of
consortium members releasing certified EEMBC scores had
dwindled over the years. It’s a shame, because EEMBC bench-
marks are far better than the most common substitute—
Dhrystone mips. That benchmark was originally created to
compare throughput with the DEC VAX 11/780, a late-
1970s minicomputer. Measuring the speed of today’s micro-
processors in Dhrystone mips is like measuring the speed of
F-22 fighter jets in furlongs per fortnight. Yet, even MPR still

cites Dhrystone mips, because often it’s the only metric
available for prerelease processors, and it’s slightly better
than comparing clock speeds.

Behind the curtain, EEMBC benchmarks are more
popular than they seem. EEMBC members that rarely or
never post scores use the suites to test their new processor
designs, evaluate compilers, and optimize their program
code. Often, prospective customers ask for unreleased
EEMBC scores under an NDA so they can make their own
comparisons with competing products. Some EEMBC
members test their competitors’ processors and disclose the
scores to customers privately. (EEMBC rules forbid mem-
bers from publicizing scores that haven’t been released by
the processor vendor.) One might argue that benchmarket-
ing is no less intense when it’s less public. But the reality is
that EEMBC is becoming less important as a public bench-
mark scoreboard and more important as a source for
embedded test software. Nonmembers can license the
benchmark code, too—EEMBC currently has more than 50
corporate licensees and more than 100 university licensees.

Even EEMBC acknowledges this trend, especially with
MultiBench. The benchmarks will help consortium mem-
bers analyze their new multicore designs and optimize the
software that runs on them. To promote this idea, EEMBC
is releasing some preliminary MultiBench results, without
naming the processors. Table 2 is one example, and Figure 3
is another. The graph in Figure 3 measures performance
scaling on a quad-core processor.

The MultiBench results in Figure 3 would be particularly
useful for developers writing a multithreaded program or
operating system for that processor. More threads aren’t
always better, at least in this example. Performance is probably
impaired by memory bottlenecks and the overhead of syn-
chronizing additional threads. The CPU architect might con-
clude that hardware multithreading is worth the additional
transistors for two threads per core but is of little value beyond
that. (Indeed, that is what Intel’s CPU architects concluded
when designing the new Atom processor; see MPR 4/7/08-01,
“Intel’s Tiny Atom.”)

Figure 4 is another example based on preliminary Multi-
Bench tests. It compares two different dual-core processors,
again without naming the chips. Note that the graphs in Fig-
ures 3 and 4 plot the performance of only four workloads—a
small slice of the voluminous data that running the whole
MultiBench suite would generate.

Multiprocessing Almost Defies Benchmarking
Chip-level multiprocessing has become the primary path
toward higher performance. To remain relevant, EEMBC
had to develop multiprocessing benchmarks. It was a daunt-
ing task, especially at a time when thousands of program-
mers are only beginning to grasp the challenge of writing
efficient software for multicore processors. Fortunately,
EEMBC is a fairly large consortium with about 50 member
companies, including the biggest names in the industry.

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

7

Although MultiBench 1.0 is the product of a committee
process, it doesn’t look like the usual committee mash-up.
It’s not perfect, but it’s a great start.

We have already noted some limitations of MultiBench.
Some of them will be addressed when EEMBC introduces the
remaining work items and sorts them into suites representing
embedded application domains. Finalizing the rules for

composite scores will provide the at-a-glance performance
summaries that are the hallmark of benchmarks—without
ignoring the raw scores for individual workloads that tell the
story in depth. Periodic updates to algorithms and datasets
will keep the workloads in step with real-world software.

Other limitations will be harder, or perhaps impracti-
cal, to overcome. Right now, MultiBench 1.0 measures SMP

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

Figure 3. Preliminary MultiBench results on an anonymous quad-core processor. In this test, all four workloads enjoy better performance after doubling
the number of concurrent threads. Thereafter, color-space conversion reaches a plateau and image rotation drops sharply, while the packet-processing
workloads continue showing improvement up to four threads. (Data source: EEMBC.)

Figure 4. Preliminary MultiBench results comparing two anonymous dual-core processors. In this comparison, color-space conversion actually runs
worse when distributed across both cores of one processor, while improving slightly on the other processor. The opposite is true for image rotation.
(Data source: EEMBC.)

8

performance on homogeneous systems. Unfortunately, SMP’s
shared-memory model and programmer-explicit threading
isn’t very scalable to large numbers of processors. Massively
parallel systems almost always adopt different programming

models, sometimes layered on exotic CPU architectures. AMP
is as valid as SMP, in some cases—perhaps in most cases, even-
tually. Heterogeneous multicore processors have numerous
advantages, especially for embedded workloads, which tend
to be more predictable than general-purpose workloads.
There are so many apples and oranges to compare that multi-
processing almost defies straightforward benchmarking.
And benchmarking is controversial by nature. (See MPR
11/8/04-01, “FPF ’04 Benchmarking Panel.”)

One intriguing avenue of exploration is the new Multi-
core Communications API (MCAPI), a project of the Multi-
Core Association, another industry consortium. MCAPI is an
attempt to create a standardized API for communication and
synchronization among closely distributed cores or processors
in embedded systems. The first version of the MCAPI specifi-
cation is available now. Future versions of MultiBench could
build on MCAPI to create AMP benchmarks for heteroge-
neous systems. There’s already a tight connection between
EEMBC and the MultiCore Association, because both were
founded by and are headed by Markus Levy. (See MPR
9/5/06-01, “Multicore Multiplies the Challenges.”)

Overall, MPR thinks MultiBench will prove its value as
an independent analysis tool for CPU architects working on
new designs and for programmers struggling to write software
for those designs. In addition, we look forward to seeing the
first MultiBench scores next year, and we encourage
EEMBC members to publish scores. The results are sure to
be surprising and interesting.

© I N - S T A T J U L Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

EEMBC’s Multibench Arrives

P r i c e & Av a i l a b i l i t y

MultiBench 1.0 is available now to EEMBC members
and licensees, including OEMs and educational institu-
tions. Fees depend on the number of workloads licensed.
For a single-user license, fees range from $2,000 for the
office-automation workloads to $3,500 for the networking
workloads. All the workloads can be licensed for $5,500.
In addition, benchmarking requires the MultiBench test-
harness software, which costs $1,500 for a single-user
license. The MultiBench Architect tool, which includes the
Workload Creator, is optional and costs $4,000.

EEMBC also sells site licenses for all these products.
Groups of workloads range from $3,000 to $6,000 each,
or $9,800 for the whole set. The test harness costs $2,500,
and MultiBench Architect costs $6,000. Complete testing
services are available from the EEMBC Technology Center
for additional fees.

For information about EEMBC, visit www.eembc.org.
For information about the MultiCore Association,

visit www.multicore-association.org.

SUBSCRIPTION INFORMATION

To subscribe to Microprocessor Report, contact our customer service department in Scottsdale, Arizona by phone, 480.483.4441;
fax, 480.483.0400; email, epotter@reedbusiness.com; or Web, www.MDRonline.com.

*Sales tax applies in the following states: AL, AZ, CO, DC, GA, HI, ID, IN, IA, KS, KY, LA, MD, MO, NV, NM, RI, SC, SD, TN, UT, VT, WA,
and WV. GST or HST tax applies in Canada.

U.S. & Canada* ElsewhereOne year
Web access only $895 $895
Hardcopy only $1,295 $1,495
Both Hardcopy and Web access $1,395 $1,595

Two years U.S. & Canada* Elsewhere
Web access only $1,495 $1,495
Hardcopy only $1,795 $1,895
Both Hardcopy and Web access $1,895 $1,995

