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TeleBench™ Version 1.1 Benchmark Name: 
Autocorrelation 

 

Highlights 
 Calculation of a finite length fixed-

point autocorrelation function. 
 16 bit, fixed point (integer) 

arithmetic. 

 Accumulation overflow protection 
(no pre-scaling). 

 Multiple (3) data sets: sine, pulse, 
and speech. 

 
 
Application Autocorrelation is one of the basic analysis tools in signal processing. It 

represents the second order statistics of a random process and is widely used 
for analysis and design in many telecommunications applications. The 
autocorrelation function R[k] is defined as the expected value of 
x[n]*x[n+k], where x[n] is random process (R[k] = E{x[n]*x[n+k]}, E – the 
expectation operator). In practical applications, the expected value operation 
is replaced by a sum operation, R[k] = 1/N*�nx[n]*x[n+k], over N samples 
as an estimation of R. 
 
Practically, the autocorrelation coefficient at lag k R[k], represents the 
amount of correlation between two samples of the sequence x spaced by k 
samples apart. The amount of correlation can be translated into redundancy 
in compression applications, or system response in modeling and system 
identification. 
 
Autocorrelation functions are widely used in many telecommunication 
applications such as speech compression, speech recognition, channel 
estimations, sequence estimation (maximum likelihood), system identification 
and for the solution of the well-known Yule-Walker equations. 
 
  

Benchmark 
Description 

This benchmark performs a fixed-point autocorrelation function calculation of 
a finite length input sequence according to the following formula: 
 
AutoCorrData [k] = 1/N*�n InputData [n]* InputData [n+k].    k=0,1,…K-1 
 
InputData is the input sequence given in a 16-bit signed integer 
representation (“short”). 
The benchmark implements a 32-bit wide accumulation along with an 
overflow protection (via scaling) and returns the K (NumberOfLags) length 
AutoCorrData sequence in 16-bit signed integer format (“short”).  
The datasets for this benchmark comprises three signal shapes.  These 
shapes are a sine wave of frequency Fs/32 and 1024 samples length, a 16 
samples symmetric pulse function, and a segment of 500 samples voiced 
speech signal.  The shape may not affect the timing and the accuracy of the 
output.  
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Analysis of 
Computing 
Resources 

The arithmetic operations used in this benchmark are multiply, shift and add. 
The algorithm is implemented in two nested loops where the actual arithmetic 
is executed in the inner loop. 
The benchmark explores the target CPU’s ability to efficiently perform 
multiply, parameterized shift, and add operations in a nested loop structure. 
 
 

Special 
Notes 

All of the data files must be run to obtain an EEMBC Telemark™ score. 
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TeleBench™ Version 1.1 Benchmark Name: Bit 

Allocation 
 

Highlights 
 Benchmarks part of a DSL modem 

that uses discrete multi-tone 
(DMT) technology 

 16 bit fixed point (integer) code 

 Multiple (3) data sets 
 Largely Integer Math with memory 

accesses, fits inside small L1 
caches but based on a real 
algorithm in a real application 

 
 
Application This benchmark performs a Bit Allocation algorithm for digital subscriber loop 

(DSL) modems that use discrete multi-tone (DMT) technology.  The 
benchmark provides an indication of the potential performance of a 
microprocessor in a DMT based DSL modem system. 
 
DMT modulation partitions a channel into a large number of independent 
subchannels (carriers), each characterized by a signal to noise ratio (SNR).  A 
bit allocation algorithm is thus required to allocate a number of bits to these 
carriers according to the measured SNR of each carrier.   
 

Benchmark 
Description 

The benchmark initializes the number of carriers, which come from different 
data sets (256, 100 and 20).  The SNR profile in dB for the carriers is 
contained in a 16-bit input array (CarrierSNRdB).  The range of Carriers' SNR 
in dB, [-64.0, 63.998] (float), is represented by the range [-32768, 32767] in 
fixed-point format.  The total number of bits (BitsPerDMTSymbol) is allocated 
to the carriers by using a "water level" algorithm: each carrier is compared 
with a "water level".  Carriers whose SNR is below the water level have no 
bits allocated to them. Carriers with an SNR above the water level have bits 
allocated to them in proportion to the difference between the water level and 
that carrier's SNR.  The maximum number of bits which can be allocated to a 
carrier is defined as MAX_BITS_PER_CARRIER.  If the difference between a 
carrier's SNR and the current water level is larger than or equal to 32767, 
MAX_BITS_PER_CARRIER bits will be allocated to the carrier.  Upon the start 
of the benchmark, the maximum SNR of the carriers is saved as the initial 
water level. 
                                                                      
The exact number of bits allocated to a carrier for a given delta from the 
water level is given by the allocation map array.  This array is a pre-
computed look-up table whose values range from 0 to 
MAX_BITS_PER_CARRIER.                                     
 
The total bit allocation is clamped to the "Bits Per DMT Symbol", BPDS.  This 
means that some carriers near the end of the allocation will have fewer or no 
bits allocated to them than the above calculation would assign.  This is 
handled as follows to insure convergence: if the sum of the bits to be 
allocated to a carrier (CarrierBits) and the bits that have been allocated 
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before to the carrier (TotalBits) are larger than the total bit allocation 
(BitsPerDMTSymbol), then the "CarrierBits" will be set to the difference 
between the "BitsPerDMTSymbol" and "TotalBits". 
                                                                            
If, for a given water level, fewer than BPDS bits are allocated, the water level 
will be lowered.  The amount that the water level is lowered is proportional to 
the number of remaining bits, and inversely proportional to the number of 
carriers.  The allocation is then performed again from the beginning with the 
new water level.  
 
A single iteration of the benchmark is complete when all BPDS bits are 
allocated for a given water level.  Upon exit, allocation results are returned in 
the 16-bit output array: CarrierBitAllocation and the final water level in dB 
are stored at “WaterLeveldB_out”.   

Analysis of 
Computing 
Resources 

The Bit Allocation benchmark performs integer math on 16 bit signed 
quantities (e.g., the DeltadB and TotalBits calculation) as well as shift and 
logical compare operations (Water level comparison, etc.).  These operations 
and accessing the data from memory are primarily what is tested by this 
benchmark.  The buffer sizes in memory are relative small, which tend to 
take up residence in cache; therefore, this benchmark has a high cache hit 
rate for microprocessors with 16KB of Data Cache.  The code size is small and 
easily fits in a small L1 Instruction Cache. 

Special 
Notes 

1. Each of the three packet sizes must be run to obtain an EEMBC Telemark™ 
score. 
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TeleBench™ Version 1.1 Benchmark Name:  

Convolutional Encoder 
 

Highlights 
 Benchmark encodes data for 

forward error correction, as seen 
in wireless communication 
systems.    

 16 bit & 8 bit integer math and 
logic. 

 Multiple data sets (3) 
 Fits inside small L1 caches to allow 

focus on CPU-centric performance.  
 
 
Application This benchmark performs a generic Convolutional Encoder algorithm.   

 
Convolutional Encoding adds redundancy to a transmitted electromagnetic 
signal to support forward error correction at the receiver.  A transmitted 
electromagnetic signal in a noisy environment can generate random bit errors 
on reception.  By combining Convolutional Encoding at the transmitter with 
Viterbi Decoding at the receiver, these transmission errors can be corrected 
at the receiver, without requesting a retransmission.   
 
This benchmark provides an indication of the potential performance 
of a microprocessor , when used to generate convolutional codes as 
used in forward error correction. 
 

Benchmark 
Description 

The Convolutional Encoding benchmark provides a generic algorithm for 
producing a sequence of BranchWords from DataByteSize number of serial 
input DataBits.  The algorithm is generic because generating polynomials are 
passed parameters from the EEMBC Test Harness.  The characteristics of the 
generating polynomials are unique for each data set, and are controlled by 
NumberCodeVectors, ConstraintLength, and CodeMatrix. 
 
NumberCodeVectors indicates the number of generating polynomials.   
ConstraintLength is equal to one plus the number of delayed DataBit values 
required for the generating polynomials.  CodeMatrix is an array of size 
ConstraintLength by NumberCodeVectors.   The values in a column of the 
code matrix (zeros or ones) correspond to the current and delayed DataBit 
values, indicating which terms are present in the generating polynomial.   
 
By using generating polynomials that are functions of current and previous 
input DataBits, the Convolutional Encoder generates a number of output 
BranchWords per DataBit equal to the NumberCodeVectors. 
 
The EEMBC Test Harness can request one of the three generating polynomials 
listed below.  In these equations, the notation “D4”, for example, means “the 
DataBit that occurred four bits prior to the current DataBit.”  G0 and G1 are 
the output BranchWords. The “+” operation is implemented as a bitwise 
exclusive OR in the benchmark.   
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Generating Polynomials: 
 

• Test case xk5r2dt -- ConstraintLength=5, NumberCodeVectors=2 
G0 = 1+D2+D3+D4   (octal 27) 
G1 = 1+D+D4            (octal 31) 
 

• Test case xk4r2dt -- ConstrantLength=4, NumberCodeVectors=2 
G0 = 1+D1+D2+D3   (octal 17) 
G1 = 1+D2+D3          (octal 13) 

• Test case xk3r2dt -- ConstraintLength=3, NumberCodeVectors=2 
G0 = 1+D1+D2          (octal 7) 
G1 = 1+D2                 (octal 5) 
 

Analysis of 
Computing 
Resources 

The Convolutional Encoder performs 16-bit signed & 8-bit unsigned 
operations, bitwise exclusive-OR operations, and bytewise shifts. This 
benchmark comprises 20 lines of executable C-code.  Data sets use a 
maximum of 512 DataBits per iteration. 

Special 
Notes 

1. All three convolutional encoder data sets must be run to obtain an EEMBC 
Telemark™ score. 
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TeleBench™ Version 1.1 Benchmark Name: Fast 

Fourier Transform (FFT) 
 

Highlights 
 Implements a decimation in time 

256 fixed point 16 bit FFT using a 
Butterfly technique 

 Allows for interleaved or non-
interleaved data 

 Typical FFT used in 
Telecommunications applications 
(e.g. a mobile/cellular phone) 

 Multiple (3) data sets: sine, pulse, 
and high frequency 

 FFT is benchmarked; Inverse FFT 
(iFFT) is included in the code for 
analysis purposes only 

 Integer Math with complexity; fits 
inside small L1 caches. 

 
 
Application The Fast Fourier transform benchmarks perform tests of a very fundamental 

algorithm that underlies a wide variety of signal processing applications. A 
Fourier transform performs a frequency analysis of a signal and therefore can 
be used for filtering frequency-dependent noise or interference of a 
transmission, for identifying the information content of a frequency-
modulated signal, and many other purposes. A good general reference for 
Fourier transforms, algorithms for computing them, and some of their signal 
processing applications may be found in The Digital Signal Processing 
Handbook, Vijay K. Madisetti and Douglas B. Williams, Eds. (CRC Press, Boca 
Raton, FL, 1998). The benchmark provides an indication of the 
potential performance of a microprocessor in a core task used in a 
wide variety of telecommunications applications. 
 
The FFT benchmarks apply to discrete data, which may be obtained for 
example from an analog-to-digital converter applied to a continuous signal. 
All benchmark FFTs use decimation in time and are performed on 256 16-bit 
complex points. All data are in fixed-point format, and therefore scaling must 
be performed, as needed, to prevent arithmetic overflow. Three different 
varieties of input data are used: a square pulse, a high-frequency test 
module, and a sine wave of a certain frequency. Benchmark scores for each 
variety are reported separately. The initial bit-reversal step is explicitly 
included. 
 

Benchmark 
Description 

A Fourier transform operates on the principle that a set of N stochastic input 
data points can be Fourier expanded in terms of N orthogonal exponentials of 
period N, taken as exp[-j(2�/N)kn]. The nth element of the data is expressed 
as a sum over k=0,…,N-1 of these trigonometric factors (known as twiddle 
factors), each multiplied by a frequency coefficient. In most cases the data 
are available and the frequency coefficients are desired. These are obtained 
by a similar expansion in terms of the data; this direction is known as the 
forward transform. The absolute squares of these coefficients specify the 
strength of each frequency in the variations of the data. By convention the 
input data are said to lie in the time domain, such that each data point comes 
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at a fixed time interval from the preceding. The output coefficients then are 
said to lie in the frequency domain. An FFT algorithm will produce N such 
coefficients separated by a fixed frequency interval. 
 
For example, if all data points had exactly the same value then the only non-
zero frequency coefficient would be the one at zero frequency (the DC 
component), since no variation is present. 
 
A fast Fourier transform takes advantage of the fact that the trigonometric 
factors repeat periodically. Therefore partial sums can be formed that can be 
reused many times, so an FFT will take an amount of time proportional to 
Nlog(N) instead of N2, as brute-force computation of a Fourier transform to 
obtain N coefficients from N data points would require. The base to which the 
logarithm is taken depends on the algorithm employed. Very many 
algorithms are available, depending primarily on the number of points N. 
Many common applications rely on the fact that a single Fourier transform 
can be decomposed into two equal-sized transforms that are combined at the 
end. Proceeding in this manner to repeatedly subdivide the data in halves, 
one will arrive at a set of simple two-component transforms that must be 
combined, provided the number N of data points is a power of 2. Each 
subdivision is a “stage;” there will be log2(N) stages in the computation using 
this technique. This is the basis of the “radix-2” algorithm, the 
implementation used in the EEMBC Out-of-the-Box FFT algorithm. 
 
A “bit-reversal” re-ordering step is required to complete an FFT 
because the output coefficients do not otherwise occur in increasing 
frequency order. This step may be performed on the input data 
(“decimation in time,” DIT) or on the output frequencies 
(“decimation in frequency,” DIF). All EEMBC benchmarks use DIT. 
 
The execution speed of an FFT has had a revolutionary impact on the digital 
signal-processing industry. The FFT is a fundamental component of very 
many signal-processing applications. 
 
This benchmark performs an FFT with three different assumptions on the 
shape of the input data. These shapes are a sine wave, a square pulse, and a 
high-frequency test module. The shape may or may not affect the timing and 
the accuracy of the output. All input data is 16-bit complex and the FFTs are 
performed on N=256 points.  
 
The twiddle factors are supplied in the test harness. Input data and/or 
twiddle factors may have real and imaginary parts interleaved or sequential, 
as specified by C preprocessor parameters (i.e., defined at compile time). 
Whichever choice is made, both have to be treated the same. These choices 
do not affect timing. Default is for both to be interleaved. The bit-reversal 
indices are also pre-computed and supplied as part of the test harness. 
 
An inverse Fourier transform is also possible (see separate datasheet). This 
computation is very similar except that it begins with N equally-spaced 
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frequency coefficients and returns N equally-spaced time-domain data. A 
Fourier transform followed by its inverse should yield the original data, 
unchanged except for computation errors. The default for all EEMBC 
benchmarks is in the forward direction. The direction may be set by a 
preprocessor parameter. 
 

Analysis of 
Computing 
Resources 

The forward FFT benchmark performs integer math on 16-bit signed 
quantities (the time-domain input data and twiddle factors). Both data and 
twiddle factors are assumed to be complex and will therefore each require 
256×2 16-bit locations in cache or memory; the output frequency coefficients 
will require the same amount.  
 
The code size is small and fits ina small L1 instruction cache. 
 
It is left to the user to run the benchmark through enough iterations to 
amortize the overhead associated with the test harness and initial cache 
misses. The default for this benchmark is 1000 iterations. ECL will double-
check this with other values. Assumptions about data values would be 
imprudent, as ECL has its own private data sets. 

Special 
Notes 

1. Each of data files must be run to obtain an EEMBC Telemark™ score. 
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TeleBench™ Version 1.1 Benchmark Name: Viterbi 

Decoder 
 

Highlights 
 Benchmarks ability to process a 

forward error corrected stream 
 Algorithm handles IS-136 channel 

 Input is packet of 344 6-bit values 
 Implements add-compare-select 
 Includes four distinct data sets 

 
 

Application The Viterbi Decoder benchmark exploits redundancy in a received data 
stream to be able to recover the originally transmitted data. The benchmark 
provides an indication of the potential performance of a 
microprocessor to be able to process a forward error corrected (FEC) 
stream using the Viterbi algorithm for decode. 
 
A communication channel that is corrupted by noise typically uses FEC to 
maintain transmission quality and efficiency. One such FEC mechanism is the 
use of Convolutional encoding (see the Convolutional Encoding EEMBC 
benchmark datasheet) at the transmitter and the use of Viterbi decoding at 
the receiver. The Viterbi decode process is an “asymptotically optimum” 
approach to the decoding of Convolutional codes in a memory-less noise 
environment. This benchmark implements a Viterbi decoder that would be 
used to handle an embedded IS-136 channel. 
 

Benchmark 
Description 

The benchmark implements a soft decision Viterbi decoder. The input is a 
packet of 344 6-bit values each of which represents a pair of encoded bits 
(i.e. the input bit stream was produced by a ½ rate Convolutional encoder 
which generates a pair of output bits for each input bit).  The 3-bit value of 
each bit represents a soft decision value in the range 0 to 7. The value 0 
indicates a strong indication that a “1” has been received whilst a value 7 
indicates a strong indication that a “0” has been received. The generator 
polynomials used for the Convolutional encode process are: 
 

1 + x + x3 + x5 
1 + x2 + x3 + x4 + x5 

 
The Viterbi decoding algorithm is best viewed from the perspective of the 
trellis, for which the reader is referred to the relevant literature. The trellis 
describes the state diagram of the convolutional encoder as it evolves 
through time. 
 
The decode process consists of a number of processes which are described 
below: 
 
Compute Branch Metrics 
This process progresses forwards through the trellis and attempts to calculate 
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at each stage the distance between the received code word and all of the 
possible channel code words that could have been received. 
 
Add Compare And Select (ACS) 
Takes the branch metrics and computes the partial path metrics at each node 
in the trellis. The surviving path at each node is identified and the state 
history table updated accordingly. 
 
Select Minimum Path Metric 
Once the computation of branch metrics and ACS is the complete the state 
with the minimum path metric from the last stage of state history table is 
selected. This is the starting point for the trace back. 
 
Trace Back And Recover Data 

Using the starting point at the end of the state history table with the 
minimum path metric iterate back through the state history table, compute 
and then store the bit that would cause each state transition. 
 

Analysis of 
Computing 
Resources 

Viterbi decode is a computationally expensive process. The benchmark 
explores the target CPU’s ability to perform loops, bit-wise operations, table-
lookups, comparisons and basic arithmetic operations. 

 
 
 
 
 
 
 

 
 


