
w w w . e e m b c . o r g

software
benchmark
data book

TeleBench™1.1

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 1

Table of Contents

Autocorrelation ..2

Bit Allocation ...4

Convolutional Encoder ..6

Fast Fourier Transform (FFT) ...8

Viterbi Decoder ..11

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 2

TeleBench™ Version 1.1 Benchmark Name:
Autocorrelation

Highlights
 Calculation of a finite length fixed-

point autocorrelation function.
 16 bit, fixed point (integer)

arithmetic.

 Accumulation overflow protection
(no pre-scaling).

 Multiple (3) data sets: sine, pulse,
and speech.

Application Autocorrelation is one of the basic analysis tools in signal processing. It

represents the second order statistics of a random process and is widely used
for analysis and design in many telecommunications applications. The
autocorrelation function R[k] is defined as the expected value of
x[n]*x[n+k], where x[n] is random process (R[k] = E{x[n]*x[n+k]}, E – the
expectation operator). In practical applications, the expected value operation
is replaced by a sum operation, R[k] = 1/N*�nx[n]*x[n+k], over N samples
as an estimation of R.

Practically, the autocorrelation coefficient at lag k R[k], represents the
amount of correlation between two samples of the sequence x spaced by k
samples apart. The amount of correlation can be translated into redundancy
in compression applications, or system response in modeling and system
identification.

Autocorrelation functions are widely used in many telecommunication
applications such as speech compression, speech recognition, channel
estimations, sequence estimation (maximum likelihood), system identification
and for the solution of the well-known Yule-Walker equations.

Benchmark
Description

This benchmark performs a fixed-point autocorrelation function calculation of
a finite length input sequence according to the following formula:

AutoCorrData [k] = 1/N*�n InputData [n]* InputData [n+k]. k=0,1,…K-1

InputData is the input sequence given in a 16-bit signed integer
representation (“short”).
The benchmark implements a 32-bit wide accumulation along with an
overflow protection (via scaling) and returns the K (NumberOfLags) length
AutoCorrData sequence in 16-bit signed integer format (“short”).
The datasets for this benchmark comprises three signal shapes. These
shapes are a sine wave of frequency Fs/32 and 1024 samples length, a 16
samples symmetric pulse function, and a segment of 500 samples voiced
speech signal. The shape may not affect the timing and the accuracy of the
output.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 3

Analysis of
Computing
Resources

The arithmetic operations used in this benchmark are multiply, shift and add.
The algorithm is implemented in two nested loops where the actual arithmetic
is executed in the inner loop.
The benchmark explores the target CPU’s ability to efficiently perform
multiply, parameterized shift, and add operations in a nested loop structure.

Special
Notes

All of the data files must be run to obtain an EEMBC Telemark™ score.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 4

TeleBench™ Version 1.1 Benchmark Name: Bit

Allocation

Highlights
 Benchmarks part of a DSL modem

that uses discrete multi-tone
(DMT) technology

 16 bit fixed point (integer) code

 Multiple (3) data sets
 Largely Integer Math with memory

accesses, fits inside small L1
caches but based on a real
algorithm in a real application

Application This benchmark performs a Bit Allocation algorithm for digital subscriber loop

(DSL) modems that use discrete multi-tone (DMT) technology. The
benchmark provides an indication of the potential performance of a
microprocessor in a DMT based DSL modem system.

DMT modulation partitions a channel into a large number of independent
subchannels (carriers), each characterized by a signal to noise ratio (SNR). A
bit allocation algorithm is thus required to allocate a number of bits to these
carriers according to the measured SNR of each carrier.

Benchmark
Description

The benchmark initializes the number of carriers, which come from different
data sets (256, 100 and 20). The SNR profile in dB for the carriers is
contained in a 16-bit input array (CarrierSNRdB). The range of Carriers' SNR
in dB, [-64.0, 63.998] (float), is represented by the range [-32768, 32767] in
fixed-point format. The total number of bits (BitsPerDMTSymbol) is allocated
to the carriers by using a "water level" algorithm: each carrier is compared
with a "water level". Carriers whose SNR is below the water level have no
bits allocated to them. Carriers with an SNR above the water level have bits
allocated to them in proportion to the difference between the water level and
that carrier's SNR. The maximum number of bits which can be allocated to a
carrier is defined as MAX_BITS_PER_CARRIER. If the difference between a
carrier's SNR and the current water level is larger than or equal to 32767,
MAX_BITS_PER_CARRIER bits will be allocated to the carrier. Upon the start
of the benchmark, the maximum SNR of the carriers is saved as the initial
water level.

The exact number of bits allocated to a carrier for a given delta from the
water level is given by the allocation map array. This array is a pre-
computed look-up table whose values range from 0 to
MAX_BITS_PER_CARRIER.

The total bit allocation is clamped to the "Bits Per DMT Symbol", BPDS. This
means that some carriers near the end of the allocation will have fewer or no
bits allocated to them than the above calculation would assign. This is
handled as follows to insure convergence: if the sum of the bits to be
allocated to a carrier (CarrierBits) and the bits that have been allocated

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 5

before to the carrier (TotalBits) are larger than the total bit allocation
(BitsPerDMTSymbol), then the "CarrierBits" will be set to the difference
between the "BitsPerDMTSymbol" and "TotalBits".

If, for a given water level, fewer than BPDS bits are allocated, the water level
will be lowered. The amount that the water level is lowered is proportional to
the number of remaining bits, and inversely proportional to the number of
carriers. The allocation is then performed again from the beginning with the
new water level.

A single iteration of the benchmark is complete when all BPDS bits are
allocated for a given water level. Upon exit, allocation results are returned in
the 16-bit output array: CarrierBitAllocation and the final water level in dB
are stored at “WaterLeveldB_out”.

Analysis of
Computing
Resources

The Bit Allocation benchmark performs integer math on 16 bit signed
quantities (e.g., the DeltadB and TotalBits calculation) as well as shift and
logical compare operations (Water level comparison, etc.). These operations
and accessing the data from memory are primarily what is tested by this
benchmark. The buffer sizes in memory are relative small, which tend to
take up residence in cache; therefore, this benchmark has a high cache hit
rate for microprocessors with 16KB of Data Cache. The code size is small and
easily fits in a small L1 Instruction Cache.

Special
Notes

1. Each of the three packet sizes must be run to obtain an EEMBC Telemark™
score.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 6

TeleBench™ Version 1.1 Benchmark Name:

Convolutional Encoder

Highlights
 Benchmark encodes data for

forward error correction, as seen
in wireless communication
systems.

 16 bit & 8 bit integer math and
logic.

 Multiple data sets (3)
 Fits inside small L1 caches to allow

focus on CPU-centric performance.

Application This benchmark performs a generic Convolutional Encoder algorithm.

Convolutional Encoding adds redundancy to a transmitted electromagnetic
signal to support forward error correction at the receiver. A transmitted
electromagnetic signal in a noisy environment can generate random bit errors
on reception. By combining Convolutional Encoding at the transmitter with
Viterbi Decoding at the receiver, these transmission errors can be corrected
at the receiver, without requesting a retransmission.

This benchmark provides an indication of the potential performance
of a microprocessor , when used to generate convolutional codes as
used in forward error correction.

Benchmark
Description

The Convolutional Encoding benchmark provides a generic algorithm for
producing a sequence of BranchWords from DataByteSize number of serial
input DataBits. The algorithm is generic because generating polynomials are
passed parameters from the EEMBC Test Harness. The characteristics of the
generating polynomials are unique for each data set, and are controlled by
NumberCodeVectors, ConstraintLength, and CodeMatrix.

NumberCodeVectors indicates the number of generating polynomials.
ConstraintLength is equal to one plus the number of delayed DataBit values
required for the generating polynomials. CodeMatrix is an array of size
ConstraintLength by NumberCodeVectors. The values in a column of the
code matrix (zeros or ones) correspond to the current and delayed DataBit
values, indicating which terms are present in the generating polynomial.

By using generating polynomials that are functions of current and previous
input DataBits, the Convolutional Encoder generates a number of output
BranchWords per DataBit equal to the NumberCodeVectors.

The EEMBC Test Harness can request one of the three generating polynomials
listed below. In these equations, the notation “D4”, for example, means “the
DataBit that occurred four bits prior to the current DataBit.” G0 and G1 are
the output BranchWords. The “+” operation is implemented as a bitwise
exclusive OR in the benchmark.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 7

Generating Polynomials:

• Test case xk5r2dt -- ConstraintLength=5, NumberCodeVectors=2
G0 = 1+D2+D3+D4 (octal 27)
G1 = 1+D+D4 (octal 31)

• Test case xk4r2dt -- ConstrantLength=4, NumberCodeVectors=2
G0 = 1+D1+D2+D3 (octal 17)
G1 = 1+D2+D3 (octal 13)

• Test case xk3r2dt -- ConstraintLength=3, NumberCodeVectors=2
G0 = 1+D1+D2 (octal 7)
G1 = 1+D2 (octal 5)

Analysis of
Computing
Resources

The Convolutional Encoder performs 16-bit signed & 8-bit unsigned
operations, bitwise exclusive-OR operations, and bytewise shifts. This
benchmark comprises 20 lines of executable C-code. Data sets use a
maximum of 512 DataBits per iteration.

Special
Notes

1. All three convolutional encoder data sets must be run to obtain an EEMBC
Telemark™ score.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 8

TeleBench™ Version 1.1 Benchmark Name: Fast

Fourier Transform (FFT)

Highlights
 Implements a decimation in time

256 fixed point 16 bit FFT using a
Butterfly technique

 Allows for interleaved or non-
interleaved data

 Typical FFT used in
Telecommunications applications
(e.g. a mobile/cellular phone)

 Multiple (3) data sets: sine, pulse,
and high frequency

 FFT is benchmarked; Inverse FFT
(iFFT) is included in the code for
analysis purposes only

 Integer Math with complexity; fits
inside small L1 caches.

Application The Fast Fourier transform benchmarks perform tests of a very fundamental

algorithm that underlies a wide variety of signal processing applications. A
Fourier transform performs a frequency analysis of a signal and therefore can
be used for filtering frequency-dependent noise or interference of a
transmission, for identifying the information content of a frequency-
modulated signal, and many other purposes. A good general reference for
Fourier transforms, algorithms for computing them, and some of their signal
processing applications may be found in The Digital Signal Processing
Handbook, Vijay K. Madisetti and Douglas B. Williams, Eds. (CRC Press, Boca
Raton, FL, 1998). The benchmark provides an indication of the
potential performance of a microprocessor in a core task used in a
wide variety of telecommunications applications.

The FFT benchmarks apply to discrete data, which may be obtained for
example from an analog-to-digital converter applied to a continuous signal.
All benchmark FFTs use decimation in time and are performed on 256 16-bit
complex points. All data are in fixed-point format, and therefore scaling must
be performed, as needed, to prevent arithmetic overflow. Three different
varieties of input data are used: a square pulse, a high-frequency test
module, and a sine wave of a certain frequency. Benchmark scores for each
variety are reported separately. The initial bit-reversal step is explicitly
included.

Benchmark
Description

A Fourier transform operates on the principle that a set of N stochastic input
data points can be Fourier expanded in terms of N orthogonal exponentials of
period N, taken as exp[-j(2�/N)kn]. The nth element of the data is expressed
as a sum over k=0,…,N-1 of these trigonometric factors (known as twiddle
factors), each multiplied by a frequency coefficient. In most cases the data
are available and the frequency coefficients are desired. These are obtained
by a similar expansion in terms of the data; this direction is known as the
forward transform. The absolute squares of these coefficients specify the
strength of each frequency in the variations of the data. By convention the
input data are said to lie in the time domain, such that each data point comes

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 9

at a fixed time interval from the preceding. The output coefficients then are
said to lie in the frequency domain. An FFT algorithm will produce N such
coefficients separated by a fixed frequency interval.

For example, if all data points had exactly the same value then the only non-
zero frequency coefficient would be the one at zero frequency (the DC
component), since no variation is present.

A fast Fourier transform takes advantage of the fact that the trigonometric
factors repeat periodically. Therefore partial sums can be formed that can be
reused many times, so an FFT will take an amount of time proportional to
Nlog(N) instead of N2, as brute-force computation of a Fourier transform to
obtain N coefficients from N data points would require. The base to which the
logarithm is taken depends on the algorithm employed. Very many
algorithms are available, depending primarily on the number of points N.
Many common applications rely on the fact that a single Fourier transform
can be decomposed into two equal-sized transforms that are combined at the
end. Proceeding in this manner to repeatedly subdivide the data in halves,
one will arrive at a set of simple two-component transforms that must be
combined, provided the number N of data points is a power of 2. Each
subdivision is a “stage;” there will be log2(N) stages in the computation using
this technique. This is the basis of the “radix-2” algorithm, the
implementation used in the EEMBC Out-of-the-Box FFT algorithm.

A “bit-reversal” re-ordering step is required to complete an FFT
because the output coefficients do not otherwise occur in increasing
frequency order. This step may be performed on the input data
(“decimation in time,” DIT) or on the output frequencies
(“decimation in frequency,” DIF). All EEMBC benchmarks use DIT.

The execution speed of an FFT has had a revolutionary impact on the digital
signal-processing industry. The FFT is a fundamental component of very
many signal-processing applications.

This benchmark performs an FFT with three different assumptions on the
shape of the input data. These shapes are a sine wave, a square pulse, and a
high-frequency test module. The shape may or may not affect the timing and
the accuracy of the output. All input data is 16-bit complex and the FFTs are
performed on N=256 points.

The twiddle factors are supplied in the test harness. Input data and/or
twiddle factors may have real and imaginary parts interleaved or sequential,
as specified by C preprocessor parameters (i.e., defined at compile time).
Whichever choice is made, both have to be treated the same. These choices
do not affect timing. Default is for both to be interleaved. The bit-reversal
indices are also pre-computed and supplied as part of the test harness.

An inverse Fourier transform is also possible (see separate datasheet). This
computation is very similar except that it begins with N equally-spaced

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 10

frequency coefficients and returns N equally-spaced time-domain data. A
Fourier transform followed by its inverse should yield the original data,
unchanged except for computation errors. The default for all EEMBC
benchmarks is in the forward direction. The direction may be set by a
preprocessor parameter.

Analysis of
Computing
Resources

The forward FFT benchmark performs integer math on 16-bit signed
quantities (the time-domain input data and twiddle factors). Both data and
twiddle factors are assumed to be complex and will therefore each require
256×2 16-bit locations in cache or memory; the output frequency coefficients
will require the same amount.

The code size is small and fits ina small L1 instruction cache.

It is left to the user to run the benchmark through enough iterations to
amortize the overhead associated with the test harness and initial cache
misses. The default for this benchmark is 1000 iterations. ECL will double-
check this with other values. Assumptions about data values would be
imprudent, as ECL has its own private data sets.

Special
Notes

1. Each of data files must be run to obtain an EEMBC Telemark™ score.

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 11

TeleBench™ Version 1.1 Benchmark Name: Viterbi

Decoder

Highlights
 Benchmarks ability to process a

forward error corrected stream
 Algorithm handles IS-136 channel

 Input is packet of 344 6-bit values
 Implements add-compare-select
 Includes four distinct data sets

Application The Viterbi Decoder benchmark exploits redundancy in a received data
stream to be able to recover the originally transmitted data. The benchmark
provides an indication of the potential performance of a
microprocessor to be able to process a forward error corrected (FEC)
stream using the Viterbi algorithm for decode.

A communication channel that is corrupted by noise typically uses FEC to
maintain transmission quality and efficiency. One such FEC mechanism is the
use of Convolutional encoding (see the Convolutional Encoding EEMBC
benchmark datasheet) at the transmitter and the use of Viterbi decoding at
the receiver. The Viterbi decode process is an “asymptotically optimum”
approach to the decoding of Convolutional codes in a memory-less noise
environment. This benchmark implements a Viterbi decoder that would be
used to handle an embedded IS-136 channel.

Benchmark
Description

The benchmark implements a soft decision Viterbi decoder. The input is a
packet of 344 6-bit values each of which represents a pair of encoded bits
(i.e. the input bit stream was produced by a ½ rate Convolutional encoder
which generates a pair of output bits for each input bit). The 3-bit value of
each bit represents a soft decision value in the range 0 to 7. The value 0
indicates a strong indication that a “1” has been received whilst a value 7
indicates a strong indication that a “0” has been received. The generator
polynomials used for the Convolutional encode process are:

1 + x + x3 + x5
1 + x2 + x3 + x4 + x5

The Viterbi decoding algorithm is best viewed from the perspective of the
trellis, for which the reader is referred to the relevant literature. The trellis
describes the state diagram of the convolutional encoder as it evolves
through time.

The decode process consists of a number of processes which are described
below:

Compute Branch Metrics
This process progresses forwards through the trellis and attempts to calculate

 An Industry-Standard Benchmark Consortium

EEMBC TeleBench Data Book www.eembc.org 12

at each stage the distance between the received code word and all of the
possible channel code words that could have been received.

Add Compare And Select (ACS)
Takes the branch metrics and computes the partial path metrics at each node
in the trellis. The surviving path at each node is identified and the state
history table updated accordingly.

Select Minimum Path Metric
Once the computation of branch metrics and ACS is the complete the state
with the minimum path metric from the last stage of state history table is
selected. This is the starting point for the trace back.

Trace Back And Recover Data

Using the starting point at the end of the state history table with the
minimum path metric iterate back through the state history table, compute
and then store the bit that would cause each state transition.

Analysis of
Computing
Resources

Viterbi decode is a computationally expensive process. The benchmark
explores the target CPU’s ability to perform loops, bit-wise operations, table-
lookups, comparisons and basic arithmetic operations.

