
w w w . e e m b c . o r g

software
benchmark
data book

OABench™1.1

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 1

Table of Contents

Dithering ..2

Image Rotation ..4

Text Processing ..7

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 2

OABench™ Version 1.1 Benchmark Name: Dithering

Highlights

 Benchmarks Potential Performance
of a Printer Application

 Uses Floyd-Steinberg Error Diffusion
Dithering Algorithm (1975)

 Converts 8bpp Grayscale Image to
Binary

 Largely Integer Math with Shifts and
Logical Compares

Application The Dithering Benchmark is representative of color and monochrome printer

applications. The algorithm converts a grayscale image into a form ready for
printing using the Floyd-Steinberg Error Diffusion dithering algorithm. This
algorithm propagates an error quantity from image row to image row,
effectively diffusing errors from the rendering calculations and preventing
unwanted printing artifacts, such as banding.

References: Robert Ulichney (1987); Digital Halftoning, The MIT Press,
Cambridge, Massachusetts; pp. 239-242

Benchmark
Description

The benchmark changes a 64K byte grayscale 8bpp image to a 8K binary
image, using a Floyd-Steinberg Error Diffusion dithering algorithm. It uses
two image buffers (one for the source image and a second for the generated
output), and two line buffers to hold error data.

Two “error” arrays are used - one for saving the errors from the current row
(used to dither the next row) and one from the previous row, used to diffuse
the errors from that row to the current pixel. This array must be zeroed out
first thing before the first row, to ensure that no spurious
data is left there.

The error array is created such that there is one extra int at either end. This
eliminates special processing at the start and end of each row (but requires
zeroing the additional columns).

Each pixel of the input image file is processed as follows:

1. Calculate an “error” value using the history buffer (weighted values of
surrounding pixels).

2. Calculate a binary output pixel value and store.
3. Store "error" value to next line history buffer.

Analysis of
Computing
Resources

The benchmark effectively stresses four areas of the target CPU:

 Its indirect references used for managing internal buffers.
 Its manipulation of large data sets, since large images will stress the

cache.
 Its ability to manipulate packed-byte quantities, which are used to

hold grayscale pixel information.
 Its ability to perform four byte-wide multiply-accumulate operations

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 3

per pixel.

This benchmark uses an instruction mix of integer Add/Subtract instructions
(35%), Compare/Branch instructions (25%), Loads/Stores (20%),
Shift/Rotate instructions (10%) and integer Multiply instructions (5%). The
percentages are approximate and may vary across architectures. The C
library function memset() is called twice per iteration, once for 8196
bytes and again for 2064 bytes. No floating-point calculations are used. The
code size is small and the data size is large.

Special
Notes:

The Dithering Benchmark is part of the EEMBC OA™ score.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 4

OABench™ Version 1.1 Benchmark Name: Image

Rotation

Highlights
 Benchmarks Potential Performance

of a Printer Application.
 Uses a Bitmap Rotation Algorithm

to Perform a Clockwise, 90°
Rotation on a Binary Image.

 Tests Bit Manipulation, Comparison
and Indirect Reference
Capabilities.

 Largely Logical
Compares/Branches and Integer
Addition/Subtraction

Application

The Image Rotation Benchmark is representative of color and monochrome
printer applications that must rotate an arbitrary binary image 90 degrees,
for example, to switch between portrait and landscape modes. This
benchmark uses a bitmap rotation algorithm to perform a clockwise, 90-
degree rotation on a binary image. Rotated images are assumed to be a
complete image (i.e. not rotating a bitmap within a larger image), with rows
padded out to byte boundaries.

Benchmark
Description

The bitmap rotation algorithm is primarily aimed at testing the bit
manipulation, comparison and indirect reference capabilities of the
microprocessor. The algorithm uses a series of indirect references and bit
masks to check and set individual bits in a data buffer representing a binary
image. The implementation supports 8-, 16- and 32-bit data as well as little
and big Endian memory architectures. Two buffers are used, one for input
and one for output, rather than trying to rotate the image in place.

There are multiple input data buffers available to debug the benchmark, but
the "Medium" image must be used in the certified benchmark. This image is
295 wide and 345 bits high, or about 12K. The input buffer is included in the
benchmark as statically initialized data and the output buffer is created by
calling the test harness memory allocation routine, th_malloc(). After the
timed iterations have been completed, the test is run one additional time so
that the results can be checked by calculating a CRC check of the output
buffer.

The C library routine memset() is called at the beginning of each iteration to
set the output buffer to zeroes.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 5

Analysis of
Computing
Resources

The benchmark effectively stresses the bit manipulation capabilities of the
target CPU.

This benchmark uses an instruction mix of Compare/Branch instructions
(45%), integer Add/Subtract instructions (25%) and Loads/Stores (12%).
The percentages are approximate and may vary across architectures. The C
library function memset() is called once per iteration to initialize the 12K
output buffer to zeroes. No floating-point calculations are used. The code
size is small and the data size is moderate.

Special
Notes:

The Image Rotation Benchmark is part of the EEMBC OAmark™ score.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 6

OABench™ Version 1.1 Benchmark Name: Text

Processing

Highlights
 Benchmarks Potential Performance

of a Printer Interpretive Control
Language.

 Parses Boolean Expressions Made
Up Of Text Strings.

 Tests bit manipulation, comparison
and indirect reference capabilities.

 Largely Shift/Rotates with Integer
Math and Logical
Compares/Branches

Application

The Text Processing Benchmark is representative of a printer application
where an interpretive control language is parsed. The algorithm parses
boolean expressions represented as text lines made up of variables,
constants and operators. The variables are space separated words, from 1
to 64 characters long, the constants are single character “T” or “F” and the
operators may either be single character symbols (& | !) or their phonetic
equivalents (and, or, not). Standard precedence rules for expression
parsing apply.

Benchmark
Description

Input to the benchmark consists of a statically declared array of variable
length strings. The strings consist of variables, constants and operators
separated by spaces. For example:

“sss and fred implies (red & blue) or fred”

The expression is broken down into a binary tree structure, with each
branch on the tree being an operand (a single variable, or a constant, or a
reference to yet another tree node representing another expression). Unary
operators are stored as modifiers to each of the branches. The resulting
structure is then traversed to evaluate the value of the expression.

The benchmark avoids calling a memory allocation routine by statically
declaring and managing a 1000 node buffer.

After the timed iterations have been completed, the test is run one
additional time and a CRC is calculated for the binary tree to be used for
checking for correct operation.

Analysis of
Computing
Resources

This benchmark exercises the byte manipulation, pointer comparison,
indirect reference handling and stack manipulation capabilities of a
processor.

This benchmark uses an instruction mix of Compare/Branch instructions
(35%), Load/Store instructions (30%), Add/Subtract instructions (20%)
and Logical/Shift instructions (8%). About 30% of the memory accesses are

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 1.1 Data Book www.eembc.org 7

for characters or strings. The percentages are approximate and may vary
across architectures. The C library functions strcmp() and strncpy() are
used extensively by this benchmark. No floating-point calculations are used.
The code size and the data size are moderate.

Special
Notes:

The Text Processing Benchmark is part of the EEMBC OA™ score.

Optimizations
Allowed

Out of the Box/Standard C Full Fury / Optimized
 The C code must not be

changed unless it must
be modified to get it to
compile. All changes
must be documented and
must not have a
performance impact.

 Additional hardware can
be used if it does not
require code changes.

 All optimized libraries
must be part of the
standard compiler
package, and/or available
to all customers.

 The EEMBC Test Harness
Regular or Test Harness
Lite may be used. Test
harness changes may be
made for portability
reasons if they do not
impact performance.

ASM Opt.
Libs

Inlining Re-
write
Alg.

Hard-
ware

Yes Yes Yes No Yes

 The basic algorithm may not be

rewritten.
 The code may be rewritten in

assembler, as long as it doesn't
change the algorithm.

 Optimized libraries can be used if they
are publicly available.

 Hardware assist can be used if it is on
the same processor as that being
benchmarked.

 In-lining is allowed.
 Additional data files may be used by

ECL during certification to ensure the
correctness of the optimized
benchmark.

