
w w w . e e m b c . o r g

software
benchmark
data book

OABench™2.0

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 1

Table of Contents

Bezier ...2

Dithering ..4

Ghostscript® ..10

Rotate ..14

Text (Text Parsing) ...20

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 2

OABench™ Version 2.0 Benchmark Name: Bezier

Highlights
 Benchmarks the classic Bezier curve

algorithm
 Interpolate a set of points defined by

the four points of a Bezier curve (two
end points, two intermediate points)

 Fixed point and floating point versions
available

 A component of the EEMBC
OAV2mark™

 Four new data files implemented in
Version 2

 Bezier curves are the backbone of
computer graphics, font renderings
and design, and computer graphics.

 Implements Cyclical Redundancy
Checksum (CRC) for self-checking in
integer mode, and SNR for self
checking in floating point mode.

History,
Application,
and
Restrictions

Pierre Étienne Bézier, a French engineer, created a mathematical numerical
analysis technique for drawing parametric curves. The problem solved was
how to draw curves based on fixed data points. The creator of the first
algorithm to implement Bezier curves was Paul de Casteljau.

Bezier curves can be linear, quadratic, cubic, or even triangles. In computer
science, one of the primary applications of Bezier curves is the creation and
smoothing of fonts on-screen and in a printer for the printed page. For
example, TrueType® fonts use Bezier curves. TrueType, PostScript®,
Ghostscript, The GIMP, and many other applications use Bezier splines with
cubic Bezier curves for drawing shapes. Translation, scaling, and rotation on
the curve can be accomplished by applying the respective transform on the
control points of the curve (the points).

As with all EEMBC source code, the Bezier benchmark is not to be used in
any commercial product whatsoever.

Benchmark
Description

In EEMBC’s OABench office automation benchmark suite, the calculations
interpolate a set of points defined by the four points of a Bezier curve. Two
endpoints and two control points define the curve. The points are in 2D
space, and are defined using floating point (double precision) or integer
variables. The algorithm makes use of configuration constants in the header
file bez.h. This includes the number of points to interpolate for each curve
as well as the overall loop count. The main function makes use of a call to
the test harness malloc() to create an array of curve structures for all the
input data before processing starts. The first line in the input file defines the
number of points following in the rest of the file.

This benchmark evaluates the parametric function for Bezier curve

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 3

Benchmark
Description
(continued)

 P(t) = p0*(1-t)^3 + 3*p1*t*(1-t)^2 + 3*p2*(t^2)*(1-t) + p3*t^3

1000 iterations is the default, 10 for CRC verification runs. There are four
data sets, one of which is reserved for profiling initialization.

Analysis of
Computing
Resources

The benchmark uses division, multiplication, and scalar processing. There
are two loops (inner and outer), so efficient compilers and architectures can
take advantage of this, but the function interpolatePoints() cannot be
optimized away. This benchmark is almost exclusively CPU bound, and the
quality of the math library has an effect on performance.

Optimizations
Allowed

Out-of-the-Box / Standard C
Full Fury / Optimized

 The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

 For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

 All Optimized libraries must be part of the standard compiler
package, and/or available to all customers.

 Test harness changes may be made for portability reasons if they do
not impact performance.

 For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Re-writing the code to take
advantage of parallelism is allowed so long as the correct answers are
achieved using any arbitrary keys (not just those supplied in the
benchmark code). You may not optimize out the function
interpolatePoints().

 For Optimized, optimized libraries can be used if they are publicly
available.

 For floating point, SNR is used to evaluate the quality of the output.
Double precision is required to achieve certifiable SNR.

 For Optimized, in lining is allowed.
 Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume
data patterns during optimization.

 Profile directed optimization is allowed using training data set 1,
bezdata1.txt.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 4

OABench™ Version 2.0 Benchmark Name: Dithering

Highlights
 Benchmarks potential performance of a

printer application
 Uses Floyd-Steinberg Error Diffusion

Dithering Algorithm (1975)
 Converts 8bpp grayscale image to 1bpp

monochrome.
 Largely integer math with shifts and

logical compares
 A component of the EEMBC

OAV2mark™

 Implements 11 new data files
compared with OABench Version 1.1

 Implements cyclical redundancy
checksum (CRC) for self-checking as
well as the ability to view processed
output files (new in Version 2)

 Jarvis Grayscale Dithering included for
debugging purposes

History,
Application,
and
Restrictions

The dithering benchmark is representative of color and monochrome printer
applications. The algorithm converts a grayscale image into a form ready for
printing using the Floyd-Steinberg Error Diffusion dithering algorithm. This
algorithm propagates an error quantity from image row to image row,
effectively diffusing errors from the rendering calculations and preventing
unwanted printing artifacts, such as banding.

References: Robert Ulichney (1987); Digital Halftoning, The MIT Press,
Cambridge, Massachusetts; pp. 239-242

Benchmark
Description

The benchmark changes a grayscale 8bpp image to a 1bpp monochrome
image, using a Floyd-Steinberg Error Diffusion dithering algorithm. It uses
two image buffers (one for the source image and a second for the generated
output) and two line buffers to hold error data. Two “error” arrays are used
— one for saving the errors from the current row (used to dither the next
row) and one from the previous row, used to diffuse the errors from that
row to the current pixel. This array must be zeroed out before the first row,
to ensure that no spurious data is left there.

The error array is created such that there is one extra value at either end.
This eliminates special processing at the start and end of each row (but
requires zeroing the additional columns).

Each pixel of the input image file is processed as follows:

1. Calculate an “error” value using the history buffer (weighted values of

surrounding pixels).
2. Calculate a monochrome output pixel value and store.
3. Store “error” value to next line history buffer.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 5

Benchmark
Description
(continued)

For Version 2, datasets are now taken from external data files (the same
.pgm files as found in DENbench Version 1.0), and data is output to files as
well to aid in verification. The input data files are:

 Data
Name

Data File Attributes Picture

Data 1 DavidAndDogs 564x230, 256
shades of gray.
The image has 215
unique colors.

Data 2 DragonFly 606x896, 16
million colors. The
image has 162,331
unique colors.
Highlights, wide
range of contrasts.

Data 3 EEMBCGroup

Shot-Miami
EEMBCGroupShotM
iami: 640x480, 16
million colors. The
image has 181,872
unique colors.
Large number of
fleshtones, highest
number of unique
colors in data set.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 6

Data 4 Galileo 290x415, 16
million colors. The
image has 36,557
unique colors, and
also contains "real
black" for over
30% of the
picture, which is
interesting from an
optimization
perspective.

Data 5 Goose 320x240, 256
colors. The image
has 22921 unique
colors.

Data 6 Mandrake 320x240, 16

million colors. The
image has 71,482
unique colors.

Data 7 MarsFormer
Lakes

800x482, 16
million colors. The
image has 91,152
unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 7

Data 8 Rose256 227x149, 256
colors. The image
contains 256
unique colors.

Data 9 Dragon 370 x 384, 256

colors, 88 unique
colors.

Data 10 Gradient A grayscale
gradient shading
test pattern. 256 x
256, 256 colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 8

Data 11 Medium A long, thin, black
and white picture
having 37 x 345
pixels, 256 colors,
and 255 unique
colors.

200 iterations are the default, 2 for CRC verification runs.

Analysis of
Computing
Resources

The benchmark effectively stresses four areas of the target CPU:

 Indirect references used for managing internal buffers
 Manipulation of large data sets, since large images will stress the cache
 Ability to manipulate packed-byte quantities, used to hold grayscale pixel

information
 Ability to perform four byte-wide multiply-accumulate operations per

pixel

The instruction mix for this benchmark is very architecture and compiler
dependent, since the main part of the inner loop can be implemented with
add/sub/shift, or multiplies, or MAC instructions depending on hardware
characteristics.

Analysis of
Computing
Resources
(continued)

The C library function memset() is called twice per iteration (for the output
buffer and for the error buffers). No floating-point calculations are used. The
code size is small and the data size is large. By using multiple data sets (and
private EEMBC data for certification), data-focused optimization is
eliminated.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 9

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

 The C code must not be changed for Out-of-the-Box unless it must be

modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

 For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

 All optimized libraries must be part of the standard compiler package,
and/or available to all customers.

 Test harness changes may be made for portability reasons if they do not
impact performance.

 For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Rewriting the code to take advantage of
parallelism is allowed so long as the correct answers are achieved using
any arbitrary keys (not just those supplied in the benchmark code).

 For Optimized, optimized libraries can be used if they are publicly
available.

 For Optimized, in lining is allowed.
 Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume data
patterns during optimization.

 Profile directed optimization is allowed using train data set 1,
DavidAndDogs.pgm.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 10

OABench Version 2.0 Benchmark Name: Ghostscript®

Highlights
 Benchmarks potential performance of a

PostScript® printer engine
 9 different test files stress different

printer aspects
 6 different output drivers stress

different aspects of output formatting
and rendering

 Based on open source AFPL
Ghostscript® code base

Application The Ghostscript benchmark provides an indication of the potential

performance of an embedded processor running a PostScript printer engine.
Performance is measured using nine input files reflecting different aspects of
PostScript language processing, as well as six output drivers reflecting the
different types of processing found in common printer engines.

Benchmark
Description

Ghostscript is an application developed to render print format files on a host
application. This task must perform all of the processing normally found in a
PostScript printer engine. Additionally, this task must produce final output
for a wide range of available printers and fax formatted results. This makes
Ghostscript an ideal application to measure embedded processor capabilities
to perform printer functions with a single consolidated score.

EEMBC Ghostscript* contains a significant number of functions and
algorithms used in PostScript printer engines. These functions are
implemented within a portable test harness that allows execution on a wide
range of processors and DSPs without source code changes in the main
application. This benchmark is supported by an embedded compressed
RAMfile system required to support this application.

Every PostScript printer engine contains a built-in interpreter that executes
PostScript instructions. The engine also contains modules for reading a
variety of input raster formats, fonts for rendering text characters, and an
output driver to produce each page in a format for the printer engine.

The EEMBC Ghostscript application benchmark provides:

 An interpreter for the PostScript language;
 Input modules (utilities) for reading a variety of formats, including

Postscript and Encapsulated PostScript;
 Output modules (drivers) for a wide variety of raster file formats, and

printers.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 11

Benchmark
Description
(continued)

 The Ghostscript library, a set of procedures to implement the graphics
and filtering capabilities that are primitive operations in the PostScript
language.

Libraries are incorporated to handle graphics formats such as BMP, JPEG,
PNG and tiff.

Ghostscript
Benchmark
Printer
Drivers

Ghostscript is an interpreter for the PostScript language. A PostScript
interpreter takes as input a set of commands. The output is usually a page
bitmap, which is then sent to an output device such as a printer or display.
PostScript is embedded in many printers.

The following printer output drivers are implemented in EEMBC Ghostscript
and applied to each input file:

 TIFF G4 (Fax formatting)
 256 Color BMP Bitmap format
 CMYK - 1bpp/2bpp/4bpp/8bpp color separated CMYK data

PostScript™
Features
Supported

There are three versions of PostScript: Level 1, Level 2, and PostScript 3.
Level 2 PostScript, which was released in 1992, has better support for color
printing. PostScript 3, released in 1997, supports more fonts, has better
graphics handling, and includes several features to speed up PostScript
printing.

The following PostScript Language Level 3 features are available in EEMBC
Ghostscript:

 Anti-aliased text and graphics on continuous-tone devices
 Alpha value for displays
 ICC-based color support
 Device "N" color support (6+ colors at 8 bits)
 "Argyll" color management system
 Band-at-a-time rendering for high-resolution printers

Ghostscript Input Data Set Descriptions

The following section contains a description of each input file used in the EEMBC Ghostscript
application benchmark.

Rotate-fontlist This dataset is a full listing of all standard ASCII characters of 2 fonts,
printed in landscape orientation.

Banner This dataset is comprised of several lines of text, warped to create text
effects (Circle, wave). Sixteen copies are sent and printed n-up 4x4.

Presentation This dataset is a typical business Powerpoint® presentation and includes
text combined with diagonal lines for background and a vertical gradient.
There is a PS version that is printed with four copies n-up (all slides are on

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 12

the same output page). There is a PDF version that is printed one slide per
output page.

Mandel This postscript data file includes a mathematical equation describing the
Mandelbrot set combined with a text caption. This dataset results in a
significant amount of floating point computation to create the output pixels.
The output is set to full page at 300 DPI color.

Fractal Fern This postscript includes a mathematical equation that yields a leaf-like
shape. This dataset results in a significant amount of floating point
computation to create the output pixels. The output is set to full page at 72
DPI, monochrome.

Spreadsheet This dataset is a typical excel spreadsheet that results in two pages, with
tables and charts. The output is n-up 2x2, with two copies of the
spreadsheet printed to a single page.

Photo This postscript file contains a full-color encapsulated JPEG image of a
firefighter at a burning house. A caption is included. Four copies are printed
full color, one copy per page.

Ebreadme This dataset is a typical text document and includes two pages of text taken
from the EnergyBench readme file. Eight copies are sent and printed n-up
4x4 on a single output page.

Training datasets only

3Dcolor: This dataset includes postscript instructions to cover all available color space
in a 3D-like cube.

Font catalogue This dataset prints a full listing of each available font. This is based on the
default script included with Ghostscript.

Analysis of
Computing
Resources

Ghostscript is a fully functional printer application with PostScript language
interpretation, low-level graphics conversions, and printer drivers. Internally,
the file system required for font selection and processing is also
implemented with over 400 resources used during the processing on an
embedded platform.

Profiling
Analysis

The Ghostscript benchmark with the above-mentioned datasets was profiled,
and the resulting data categorized to show that the following functions are
being performed by the benchmark.

 Dithering / half toning (Color and Monochrome)
 Error diffusion
 Color adjustment
 Color conversion
 Image transforms (rotate, scale, clip, mirror, etc.)
 Compression
 Fill
 PostScript Interpreter

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 13

Optimizations
Allowed

Out of the Box/Standard C
Full Fury/Optimized
 The C code must not be changed for Out-of-the-Box unless it must be

modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

 For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

 All optimized libraries must be part of the standard compiler package,
and/or available to all customers.

 The EEMBC Test Harness Lite must be used. Test harness changes may
be made for portability reasons if they do not impact performance

 For Optimized, the basic algorithm may be changed and/or the code can
be rewritten in assembler, as long as the output is identical (bit-exact) to
output produced by Out-of-the-box implementation on the same
platform.

 For Optimized, optimized libraries can be used if they are publicly
available.

 For Optimized, hardware-assist can be used if it is on the same processor
as that being benchmarked.

 For Optimized, in-lining is allowed.

 Additional data files may be used during certification to ensure the
correctness of the optimized benchmark. You should not assume data
patterns during optimization.

 Profile directed optimization is allowed using the training data set,
colormap.ps and/or the font catalogue data set.

*This version of Ghostscript is based on AFPL 8.54.

OABench is a trademark of the Embedded Microprocessor Benchmark Consortium. PostScript is a registered
trademark of Adobe Systems. Ghostscript is a registered trademark of Artifex Software, Inc. Powerpoint is a
registered trademark of Microsoft Corporation. All other trademarks appearing herein are the property of their
respective owners.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 14

OABench™ Version 2.0 Benchmark Name: Rotate
(Image Rotation)

Highlights

 Benchmarks potential performance of a
printer application

 Uses a bitmap rotation algorithm to
perform a clockwise 90° rotation on a
binary image

 Largely integer math with shifts and
logical compares

 Tests bit manipulation, comparison,
and indirect reference capabilities

 Largely logical compares/branches and
integer addition/subtraction

 A component of the EEMBC OAV2mark™
 11 dataset files
 Implements cyclical redundancy
checksum (CRC) for self-checking as
well as the ability to view resultant
processed output files (new in
Version 2)

History,
Application
and
Restrictions

The Rotate (Image Rotation) benchmark is representative of monochrome
printer applications that must rotate binary images 90° (for example, to
switch between portrait and landscape modes). This benchmark uses a
bitmap rotation algorithm to perform a clockwise 90° rotation on a binary
image. Rotated images are assumed to be a complete image (i.e. not rotating
a bitmap within a larger image), with rows padded out to byte boundaries.

Benchmark
Description

The bitmap rotation algorithm is primarily aimed at testing the bit
manipulation, comparison, and indirect reference capabilities of the
microprocessor. The algorithm uses a series of indirect references and bit
masks to check and set individual bits in a data buffer representing a binary
image. The implementation supports 8-, 16- and 32-bit data as well as little
and big endian memory architectures. Two buffers are used, one for input
and one for output, rather than trying to rotate the image in place.

There are multiple input data buffers available to debug the benchmark. The
input buffer is included in the benchmark is statically initialized data and the
output buffer is created by calling the test harness memory allocation
routine, th_malloc(). After the timed iterations have been completed, the test
is run one additional time so that the results can be checked by calculating a
CRC of the output buffer. The benchmark assumes 1 bit per pixel.

The C library routine memset() is called at the beginning of each iteration to
set the output buffer to zeroes.

In OABench Version 2, datasets are taken from external data files (the same
.pgm files as found in DENbench Version 1.0), and data is output to files as
well to aid in verification. The input data files are:

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 15

Data
Name

Data File Attributes Picture

Data
1

DavidAndDogs 564x230, 256 shades
of gray. The image
has 215 unique colors.

Data
2

DragonFly 606x896, 16 million
colors. The image has
162,331 unique
colors.

Data
3

EEMBCGroupS
hot-Miami

EEMBCGroupShotMia
mi: 640x480, 16
million colors. The
image has 181,872
unique colors. Large
number of fleshtones,
highest number of
unique colors in data
set.

Data
4

Galileo 290x415, 16 million
colors. The image has
36,557 unique colors,
and also contains "real
black" for over 30% of
the picture, which is
interesting from an
optimization
perspective.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 16

Data
5

Goose 320x240, 256 colors.
The image has 22921
unique colors.

Data
6

Mandrake 320x240, 16 million
colors. The image has
71,482 unique colors.

Data
7

MarsFormerLa
kes

800x482, 16 million
colors. The image has
91,152 unique colors.

Data
8

Rose256 227x149, 256 colors.
The image contains
256 unique colors.

Data
9

Dragon 370 x 384, 256 colors,
88 unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 17

Data
10

Gradient A grayscale gradient
shading test pattern.
256 x 256, 256 colors.

Data
11

Medium A long, thin, black and
white picture having
37 x 345 pixels, 256
colors, and 255
unique colors.

50 iterations are the default, 2 for CRC verification runs.

Analysis of
Computing
Resources

The benchmark effectively stresses the bit manipulation capabilities of the
target CPU.
Dynamic Instruction Mix:

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 18

ALU, 0.470817066

Loads, 0.202954569

Stores, 0.037214106

Branch, 0.28606363

Multiply/Divide,
0.002950629

The percentages are approximate and may vary across architectures. The C
library function memset() is called once per iteration to initialize the output
buffer to zeroes. No floating-point calculations are used. The code size is
small and the data size is moderate. Efficient multiplication and division as
well as bit-shifting. By using multiple data sets (and proprietary EEMBC
Technology Center data for certification), data-focused optimization is
eliminated.

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

• The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

• For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

• All optimized libraries must be part of the standard compiler package,
and/or available to all customers.

• UNROLL may be selected using a #define to fully unroll the inner loop
for Out-of-the-Box certification.

• Bits must be defined to 32 for Out-of-the-Box certification.
• Test harness changes may be made for portability reasons if they do

not impact performance.
• For Optimized, the basic algorithm may not be changed, but the code

may be rewritten in assembler. Rewriting the code to take advantage
of parallelism is allowed so long as the correct answers are achieved
using any arbitrary keys (not just those supplied in the benchmark
code).

• For Optimized, the source code may be changed to take advantage of

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 19

additional hardware.
• For Optimized, optimized libraries can be used if they are publicly

available.
• For Optimized, in lining is allowed.
• Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume data
patterns during optimization.

• Profile directed optimization is allowed using training data set 1,
DavidAndDogs.pgm.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 20

OABench™ Version 2.0 Benchmark Name: Text (Text
Parsing)

Highlights
▪ Benchmarks potential performance of a

printer interpretive control language
▪ Parses Boolean expressions made up

of text strings
▪ Tests bit manipulation, comparison,

and indirect reference capabilities.

▪ Largely shift/rotates with integer math
and logical compares/branches

▪ A component of the EEMBC OAV2mark™
▪ Three data files
▪ Implements cyclical redundancy

checksum (CRC) for self-checking

History,
Application
and
Restrictions

The Text (Text Parsing) Benchmark is representative of a printer application
where an interpretive control language like PCL or PostScript is parsed. The
algorithm parses Boolean expressions represented as text lines made up of
variables, constants, and operators. The variables are space separated
words, from 1 to 64 characters long, the constants are single character “T” or
“F” and the operators may either be single-character symbols (& | !) or their
phonetic equivalents (and, or, not). Standard precedence rules for
expression parsing apply.

Benchmark
Description

Input to the benchmark consists of rule data files that are loaded via the
EEMBC RAMfile system. OABench Version 2 has four dataset files, one of
which is used for profiling, compared with just one for OABench Version 1.1.
These files are found in the libtxt directory. Much of the code is generated by
the cheader subsystem in Version 2. The strings consist of variables,
constants, and operators separated by spaces. For example:

"sss and fred implies (red & blue) or fred"

The expression is broken down into a binary tree structure, with each branch
on the tree being an operand (a single variable, or a constant, or a reference
to yet another tree node representing another expression). Unary operators
are stored as modifiers to each of the branches. The resulting structure is
then traversed to evaluate the value of the expression.

The benchmark avoids calling a memory allocation routine by statically
declaring and managing a 1,000-node buffer. After the timed iterations have
been completed, the test is run one additional time and a CRC is calculated
for the binary tree to be used for checking for correct operation.

For each line, the benchmark breaks the expression into a binary tree
structure, where each node contains a binary expression with two operands
(each with a possible unary operator) and a binary operator. The operands
may be variables, constants, or pointers to further nodes which themselves

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 21

represent binary operations, etc.

A debug mode is provided (in this case, the #define BENCHMARK) to activate
the main timed loop, controlled by the test harness. If this is not defined,
then the program goes into an interactive mode where each "rule" (Boolean
expression) is entered by the user, parsed, and then printed out as a truth
table

If the program is in debug mode (i.e., not in benchmark mode), then the
program evaluates the expression for all possible values of the variable list.
This is done with a recursive function to set the variables, and then by
evaluating the expression stored in the binary tree.

1,000 iterations are the default, and 1,000 for CRC verification runs.

Analysis of
Computing
Resources

This benchmark exercises the byte manipulation, pointer comparison, indirect
reference handling and stack manipulation capabilities of a processor.

ALU, 39.97%

Loads, 28.04%

Stores, 10.37%

Branch, 21.62%

Multiply/Divide, 0.00%

The instruction mix is shown in the pie chart. The percentages may vary
across architectures. The C library functions strcmp () and strncpy() are used
extensively by this benchmark, and a well-designed and optimized C library
would improve performance. Unlike other EEMBC benchmarks, dynamic
memory allocations via malloc() are avoided. No floating-point calculations
are used. The code size and the data size are moderate.

 An Industry-Standard Benchmark Consortium

EEMBC Office Automation 2.0 Data Book www.eembc.org 22

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

• The C code must not be changed for Out-of-the-Box unless it must be
modified to get it to compile. All changes must be documented,
authorized by the certification authority, and must not have a
performance impact.

• For Out-of-the-Box, additional hardware can be used if it does not
require code changes.

• All optimized libraries must be part of the standard compiler package,
and/or available to all customers

• The EEMBC Test Harness Lite must be used. Test harness changes
may be made for portability reasons if they do not impact
performance.

• For Optimized, the basic algorithm may not be changed, but the code
may be rewritten in assembler. Re-writing the code to take
advantage of parallelism is allowed so long as the correct answers are
achieved using any arbitrary keys (not just those supplied in the
benchmark code).

• For Optimized, optimized libraries can be used if they are publicly
available.

• For Optimized, in lining is allowed.
• Additional data files may be used during certification to ensure the

correctness of the optimized benchmark. You should not assume
data patterns during optimization.

• Profile directed optimization is allowed using training data set 1,
ruledata1.txt.

