
 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

 Networking Version 2.0
Benchmarks

 William Bryant – Engineering Manager, Sun Microsystems, Inc. and
Chairman, EEMBC Networking Subcommittee
Rick Foos – Director of Engineering, EEMBC Certification Labs (ECL), LLC
Markus Levy – President and CEO, EEMBC
Alan R. Weiss – Chairman and CEO, EEMBC Certification Labs (ECL), LLC

August 5, 2004

 Introduction
Almost all networking equipment designs rely on embedded
microprocessors to perform many of the tasks needed to make sure
packets make it intact across the network. Hardwired logic is often too
inflexible to deal with many of the error conditions and interactions that
can occur with Internet Protocol packets. Although processors deliver
the flexibility, performance is a key issue. There is continuing demand
for faster processors to support next-generation routers and switches as
well as protocol coprocessors for clients and servers. At the same time,
equipment builders face pressure from customers to lower the cost of
these hardware pieces.

To select the best processor for the job – one that couples high speed
with low cost – the network-equipment designer needs hard information
that shows how each candidate processor will perform. It is almost
never practical to run production code on each candidate processor to
see whether it offers the best price/performance ratio or support for the
target application. So, benchmarks play a vital role in helping
equipment designers in the network industry select the processors that
can best support their applications. It is no simple task, however, to
create benchmarks that provide an accurate reflection of the real-world
performance of a given processor.

Benchmark creators must structure benchmarks carefully to ensure that
the algorithms result in the maximum stress being applied to candidate
processors. This approach helps expose the strengths and weaknesses
of individual processors on different types of code. Even with a careful
benchmark creation process, however, architectural changes and
manufacturing process advances have the potential to eliminate
consistency between benchmark scores and real-world performance. For
example, increases in transistor cell density made possible by
successive generations of silicon process technology have allowed
processor designers to provide massive increases in on-chip cache
memory. That makes it possible for some processors to run entire

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

benchmarks from cache instead of being forced to fetch data from main
memory. This provides a benchmark score that does not tally well with
real-world behavior.

For this reason, EEMBC has updated its networking benchmark suite
with benchmarks that use novel data generation techniques to ensure
that the processors under test will handle realistically large data sets
and an increased number of transactions. As a result, processors with
large caches must compete on a level playing field with those that have
traded cache size for networking optimizations or have pipelines that
have been finely tuned for handling the types of code that are
commonly used in networking applications.

Expanding on the EEMBC Networking Version 1.0 benchmark suite,
Version 2.0 combines new benchmarks with enhanced versions of
benchmarks carried over from Version 1.0. EEMBC has updated the
existing benchmarks to put more stress on processors with large caches
and more efficient, faster cores. For benchmarking purposes, the
Networking Version 2.0 suite replaces Networking Version 1.0, and the
benchmark scores from these two suites are not comparable to one
another (check the EEMBC website for more details).

By contrast, some competing benchmarks emphasize the raw transfer
rate of large blocks of data between two users. This approach does not
provide a balanced test for networking-oriented processors, as some will
have optimizations for bulk transfers, flattering them in relation to their
real-world performance, where there will be many different users with
differing traffic types. EEMBC has worked to avoid this mismatch. For
example, when the Networking benchmarks are initialized, the private
data sets that are created can model many more users than would be
possible on a typical local area network (LAN), ensuring that the
workload is representative of high load conditions.

One further change that improves correlation with real-world
performance is to ensure that the timing measurements reflect packets
coming from a network connection, rather than from a buffer. To do
this, EEMBC removed activities such as buffer-to-buffer copying from
the timed portion of benchmark code. Those buffer-to-buffer copies
would not happen in the real-world environment and, if timed during
benchmarking, could skew the results towards processors optimized for
high-speed data transfers. However, to maintain portability for the
benchmark code, the transfers remain in the code.

Ensuring Benchmark Portability
EEMBC designed the Networking Version 2.0 benchmarks with
portability in mind. EEMBC’s benchmarks must run on 32- and 64-bit
architectures, which may have big- or little-endian byte ordering. These
considerations are central to the portability of many networking
protocols. The use of bit-level masks and C data structures, such as
unions, demands careful attention to register widths and byte ordering.
The situation is complicated by the fact that networking source code

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

tends to employ highly optimized system-level functions and constructs
that are on the edge of ANSI C compliance in order to obtain the
maximum speed possible. EEMBC developed a code harness for the
benchmarks that helps ensure that these issues do not lead to
compilation problems. To ensure that, once compiled, the benchmarks
run correctly, each benchmark has built-in error checks. These use
checksums and other mechanisms to detect whether a benchmark
contains an error that causes it to not complete its work or make errors
when processing packets.
One further change in the move to Version 2 is a reflection of the
differing needs of network equipment. Some of the benchmarks are
designed to reflect the performance of client and server systems, while
others are representations of functions predominantly carried out in
infrastructure equipment. Typically, routers have no need to process
information in the TCP layer, and results for tests associated with TCP
performance will skew the results for those OEMs looking to select the
best processor for work at the lower IP layer. Therefore, the Networking
Version 2.0 benchmarks produce two new aggregate “mark” scores: the
TCPmark and the IPmark. The IPmark is intended for developers of
infrastructure equipment, while the TCPmark, which includes the TCP
benchmark, focuses on client- and server-based network hardware.

IP Packet Processing
A fundamental part of a network router’s workload is to correctly
process IP packets. These packets can be out of order, have errors, and
demand router actions, rather than just being forwarded to the next
node in the network.

Whether a packet is to be forwarded to another router or processed and
sent to a local machine, the first step for all packets is to validate the IP
header information. This is why a key part of the Version 2 benchmark
set is the Packet Check benchmark. This benchmark models a significant
subset of the IP header validation work that is specified in the RFC1812
standard that defines the requirements for packet checks carried out by
IP routers.

In operation, the Packet Check benchmark simulates a router with four
network interfaces. During initialization, the code creates a buffer and
generates the data that will represent a block of test packets. The
initialization code creates a series of packets that indicate the IP
version, checksum, and length in the header. During this process, the
code introduces errors into some packet headers and produces a count
of how many packets have deliberate errors. This count is checked at
the end to ensure that the benchmark code has executed correctly.
Using padding between packets, the benchmark specification allows
packets to be aligned on the best natural word boundary of the
microprocessor.

To maintain as much realism as possible, the benchmark has been
designed to emulate the way in which actual systems process packet

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

headers. For example, the benchmark uses a scheme where descriptors
are separated from the packet headers. This allows the descriptors to be
managed as a linked list with each descriptor pointing to an individual IP
packet header. This demonstrates the processor’s ability to work with
the branch- and pointer-intensive code found in typical packet-switch
code bases. Further, by focusing on error handling rather than raw
packet throughput, the benchmark provides a more realistic check on
processor behavior rather than just cache-to-memory speed.

Routing
Each packet on a large IP network passes through a router, which
determines whether it should be passed to another router closer to the
final destination or if the packet should be processed and forwarded to a
local machine. For the forwarding function, the router must determine
which other routers are available for forwarding, find the shortest path
to each, and detect configuration changes in the network of routers.

Open Shortest Path First (OSPF) is the most popular Internet routing
protocol used to determine the correct route for packets within IP
networks. The OSPF benchmark uses this protocol as a representation
of a processor’s ability to handle routing problems. The OSPF
benchmark implements Edsger Dijkstra’s shortest-path-first algorithm.
Shortest-path-first algorithms are processor and memory intensive,
making them good candidates for stressing high-performance
processors with large cache subsystems.

The Dijkstra algorithm finds the shortest, or least-cost, path from a
specific router to all other routers that the source knows about. It builds
a table of nodes, where each node is a router. Each node has one or
more arcs, where each arc is a directed, one-way link to another node.
These arcs represent links between routers. Each arc has a cost value
that represents the value of the link. The lower the cost number, the
more desirable it is to use the link.

The OSPF benchmark begins by creating a set of nodes and arcs that
are each connected with a cost computed by the data-generation
routine. During execution, to emulate the dynamic behavior of OSPF in
a real-world environment, the code re-initializes the table of arcs and
nodes after each benchmark run. The benchmark performs a series of
calculations using the OSPF algorithm to determine the destination port
for each given route.

Once the route tables are built using protocols such as OSPF, efficient
route lookups are fundamental to the performance of network routers.
The Route Lookup benchmark, the second of the core routing-oriented
benchmarks, is a distillation of the fundamental task of IP routers,
which is to receive and forward IP packets based on the information
found in lookup tables.

The Route Lookup benchmark uses a mechanism commonly applied to
commercial network routers. It employs a data structure known as the

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

Patricia Tree. The Patricia Tree is a compact binary tree that allows fast
and efficient searches with long or unbounded length strings and is
often used in database searches as well as routing lookups. The
benchmark monitors the processor’s ability to check the tree for the
presence of a valid route and walk through the tree to find the
destination node to which to forward the packet.

Network Boundary Processing

The Internet is not a homogeneous network. Organizations will have
their own network setups that may be incompatible with those used by
their Internet service providers. A common requirement for network
equipment is to convert packets as they pass from an internal network
to the wider Internet. Two of the EEMBC benchmarks address these
applications, which are typically processor- and memory-intensive.

An increasingly important function for IP routers that sit on the
boundary between an organization’s internal network and the Internet is
Network Address Translation (NAT). NAT is an important function
because it provides a method to work around the limited number of IP
addresses and ports on the Internet. Additionally, NAT is normally
required when a network’s internal IP addresses cannot be used outside
the network, either because they are not globally unique or because of
privacy reasons.

Figure 1. The NAT router remaps incoming and outgoing IP addresses.

 There are two types of NAT, dynamic and static. Dynamic NAT allows a
large number of clients connected in a LAN to access the Internet using
a few public addresses available to the router. Static NAT provides a
means for servers on a LAN to be accessed by clients on the Internet.

With Dynamic NAT, a client computer sends packets using its local IP
address and port number to the destination port of “a_server.com”.
When this packet arrives at the NAT-enabled router, the router rewrites
the packet, replacing the local IP and local port with its public IP
address and an available port. The router saves this translation
information in a table. When a packet arrives from “a_server.com”, the
router uses the translation information to again re-write the packet,
restoring the local IP address and the local port number. In both the
send and receive directions, checksums are also updated to reflect the

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

change in address.

With Static NAT, a local server is set up to provide service on a port: for
example, a Web server on TCP port 80. Next, a Static NAT entry is
defined in the router that maps incoming traffic from the public IP
address to the local IP address. When a packet arriving from the public
Internet does not match an IP and port in the Dynamic NAT table, the
router rewrites the packet with the local IP address in the Static NAT
entry.

Dynamic NAT routing represents the bulk of the workload, as all
outgoing packets are processed through it, plus it has the additional
complexity of port assignment on the incoming and outgoing packets to
preserve connections between clients and servers.

The NAT benchmark creates a series of packets during initialization with
various source addresses, destination addresses, and random packet
sizes. Each packet is then wrapped with IP header information. Status
information is included and the packets are assembled into a list for
processing. Finally, the NAT rules are added to the table.

The benchmark then begins processing and rewriting the IP addresses
and port numbers of packets based on the pre-defined NAT rules. Each
rewritten packet will have a modified source IP address and source port
chosen from the available ports of each IP address available to the
router. In this way, the NAT benchmark simulates an important part of
network processing for many router designs, performing many of the
functions of a commercial NAT implementation.

As Internet traffic passes from one part of the network to another, the
packets themselves may need to be altered. Each network technology
has a maximum frame size that defines the Maximum Transfer Unit
(MTU), or maximum packet size, that can be carried over the network.
When an IP packet is too large to fit within the MTU of the egress
interface, it can no longer be transmitted as a single frame. Rather, the
IP packet must be split up and transmitted in multiple frames. At the
other end of the link, fragmented packets need to be reassembled. This
process can place significant resource requirements on systems, making
processor performance on this type of workload a key consideration.
Reassembly represents the largest workload, because the router must
also deal with packets that arrive out of order and with random data
sizes.

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

Figure 2. IP fragmentation and reassembly splits and recombines
packets into smaller pieces to accommodate the maximum transfer unit
of the network.

The IP Reassembly benchmark takes the asymmetric nature of
fragmentation and reassembly into account and makes intensive use of
out-of-order delivery and random source-packet sizes to stress the
processor’s ability to perform reassembly. During benchmark
initialization, the code generates a list of packet fragments based on
source packets with random lengths. Buffers are created to hold the
fragmented packets and used to deliver the fragments so that they do
not always arrive in order. The random arrival rate is set during data
creation. The reassembly process is destructive: for memory efficiency,
the networking code performs reassembly in the same memory space as
the fragmented packets, simulating the behavior of most network
routers.

Quality of Service
The data carried over the Internet has evolved from text and files—
where timing and order of packet arrival are irrelevant—to voice, video
and multimedia, where timing and order are critical. Applications that
process real-time data streams are less tolerant of out-of-order packets
and long delays between packet arrivals. Normally, when this occurs, a
connection is dropped and requests to resend the data are initiated. This
is fine for normal data but leads to breaks in audio and video playback.

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

Figure 3. Many different types of data are carried over the Internet. The
network must manage the bandwidth to determine priority of delivery.

As real-time traffic increases, the errors and resend requests can
exceed the overall amount of data to be transferred, resulting in error-
clogged networks and dropped connections for users. Quality of Service
(QoS) processing addresses this problem by providing the ability to
measure data-transfer rates, by giving the client guaranteed data
transfer and error rates that are suitable to support a deterministic
application. This QoS guarantee significantly reduces the network
loading due to errors and retransmission and allows these new forms of
data to flow over the Internet.

The QoS benchmark simulates the processing undertaken by bandwidth
management software used to “shape” traffic flows to meet QoS
requirements. Based on predefined rules, the system paces the delivery
of the system to the desired speed. This shaping is achieved via the use
of a variant of the Weighted Fair Queuing (WFQ) algorithm. Random
Early Detection (RED) queue management is also supported to provide
flow control.

The data generation stage of the benchmark constructs a bank of
packets varying the data size, source, and destination addresses. Next,
a set of rules that determine routing that support defined data rates are
entered into the QoS tables.

The timed portion of the benchmark begins by processing packets
against the rule set, which determines the routing and addressing
needed to best preserve the QoS for each stream of packets. As the
number of packets in the system increases, port diversions begin to
occur to maintain the QoS, and queues are delayed to wait for available
pipes as determined by the algorithm. As a result, the benchmark
demonstrates close alignment with the behavior of real-world QoS

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

algorithms.

Client and Server Processing
The benchmarks covered so far have concentrated on the performance
of processors dealing with traffic at the IP layer. Clients and servers
need to process higher-level protocols, such as the Transmission Control
Protocol (TCP). Forming the transport layer protocol used by Internet
applications such as Telnet, the File Transfer Protocol (FTP), and the
HyperText Transfer Protocol (HTTP), TCP provides a link that looks, to
the application, as though it is a direct connection. Because TCP uses
the services of IP to deliver packets, and IP does not care about the
order in which complete IP packets are delivered, TCP is designed to
handle packet re-ordering and re-sending for situations where a router
may have dropped packets to be able to meet its overall service level
requirements.

Different upper-level protocols stress TCP-handling hardware in different
ways. For example, Telnet consists of short, small bursts of data in
small packets that result from a user typing commands and receiving
results. On the other hand, FTP consists of large amounts of data in
large packets moving in one direction. HTTP is somewhere in the middle
with bursts of files in one direction intermixed with control and
handshaking traffic in both directions. This makes the consideration of
traffic type essential when analyzing the performance of a processor
that will process TCP-layer traffic.

EEMBC’s Networking Version 2.0 benchmarks include a TCP benchmark
that accounts for the different behavior of TCP-based protocols by
measuring the performance of a processor that handles a workload
derived from several application models. The TCP benchmark has three
components to reflect performance in three different network scenarios.
The first is a Gigabit Ethernet involving large packet transfers to
represent the likely workload of Internet backbone equipment. The
second assumes a standard Ethernet network for packet delivery and
concentrates on large transfers using protocols such as FTP. The last
uses a standard Ethernet network model for the relay of mixed traffic
types, including Telnet, FTP, and HTTP.

The benchmark generates data based on the applications that need to
be modeled, with packet queues built to simulate both client and server
traffic. The main part of the benchmark involves processing all of the
packet queues through a server task, network channel, and client task.
These simulate the data transfers through the connection to provide a
realistic view of how the processor will cope with various forms of TCP-
based traffic.

Summary
The EEMBC Networking Version 2.0 benchmarks set a new standard for
the measurement of processors by the combination of client-server

 Certified Performance Analysis for Embedded Systems Designers

EEMBC White Paper www.eembc.org

framework, multi-user data generation, and real-world application
kernels defined by the industry. With these new benchmarks, network
equipment OEMs can be confident that test results will reflect the
performance that can be obtained from processors in production-quality
hardware.

