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 Introduction 
Almost all networking equipment designs rely on embedded 
microprocessors to perform many of the tasks needed to make sure 
packets make it intact across the network. Hardwired logic is often too 
inflexible to deal with many of the error conditions and interactions that 
can occur with Internet Protocol packets. Although processors deliver 
the flexibility, performance is a key issue. There is continuing demand 
for faster processors to support next-generation routers and switches as 
well as protocol coprocessors for clients and servers. At the same time, 
equipment builders face pressure from customers to lower the cost of 
these hardware pieces. 

To select the best processor for the job – one that couples high speed 
with low cost – the network-equipment designer needs hard information 
that shows how each candidate processor will perform. It is almost 
never practical to run production code on each candidate processor to 
see whether it offers the best price/performance ratio or support for the 
target application. So, benchmarks play a vital role in helping 
equipment designers in the network industry select the processors that 
can best support their applications. It is no simple task, however, to 
create benchmarks that provide an accurate reflection of the real-world 
performance of a given processor. 

Benchmark creators must structure benchmarks carefully to ensure that 
the algorithms result in the maximum stress being applied to candidate 
processors. This approach helps expose the strengths and weaknesses 
of individual processors on different types of code. Even with a careful 
benchmark creation process, however, architectural changes and 
manufacturing process advances have the potential to eliminate 
consistency between benchmark scores and real-world performance. For 
example, increases in transistor cell density made possible by 
successive generations of silicon process technology have allowed 
processor designers to provide massive increases in on-chip cache 
memory. That makes it possible for some processors to run entire 
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benchmarks from cache instead of being forced to fetch data from main 
memory. This provides a benchmark score that does not tally well with 
real-world behavior. 

For this reason, EEMBC has updated its networking benchmark suite 
with benchmarks that use novel data generation techniques to ensure 
that the processors under test will handle realistically large data sets 
and an increased number of transactions. As a result, processors with 
large caches must compete on a level playing field with those that have 
traded cache size for networking optimizations or have pipelines that 
have been finely tuned for handling the types of code that are 
commonly used in networking applications. 

Expanding on the EEMBC Networking Version 1.0 benchmark suite, 
Version 2.0 combines new benchmarks with enhanced versions of 
benchmarks carried over from Version 1.0. EEMBC has updated the 
existing benchmarks to put more stress on processors with large caches 
and more efficient, faster cores. For benchmarking purposes, the 
Networking Version 2.0 suite replaces Networking Version 1.0, and the 
benchmark scores from these two suites are not comparable to one 
another (check the EEMBC website for more details). 

By contrast, some competing benchmarks emphasize the raw transfer 
rate of large blocks of data between two users. This approach does not 
provide a balanced test for networking-oriented processors, as some will 
have optimizations for bulk transfers, flattering them in relation to their 
real-world performance, where there will be many different users with 
differing traffic types. EEMBC has worked to avoid this mismatch. For 
example, when the Networking benchmarks are initialized, the private 
data sets that are created can model many more users than would be 
possible on a typical local area network (LAN), ensuring that the 
workload is representative of high load conditions. 

One further change that improves correlation with real-world 
performance is to ensure that the timing measurements reflect packets 
coming from a network connection, rather than from a buffer. To do 
this, EEMBC removed activities such as buffer-to-buffer copying from 
the timed portion of benchmark code. Those buffer-to-buffer copies 
would not happen in the real-world environment and, if timed during 
benchmarking, could skew the results towards processors optimized for 
high-speed data transfers. However, to maintain portability for the 
benchmark code, the transfers remain in the code. 

Ensuring Benchmark Portability 
EEMBC designed the Networking Version 2.0 benchmarks with 
portability in mind. EEMBC’s benchmarks must run on 32- and 64-bit 
architectures, which may have big- or little-endian byte ordering. These 
considerations are central to the portability of many networking 
protocols. The use of bit-level masks and C data structures, such as 
unions, demands careful attention to register widths and byte ordering. 
The situation is complicated by the fact that networking source code 
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tends to employ highly optimized system-level functions and constructs 
that are on the edge of ANSI C compliance in order to obtain the 
maximum speed possible. EEMBC developed a code harness for the 
benchmarks that helps ensure that these issues do not lead to 
compilation problems. To ensure that, once compiled, the benchmarks 
run correctly, each benchmark has built-in error checks. These use 
checksums and other mechanisms to detect whether a benchmark 
contains an error that causes it to not complete its work or make errors 
when processing packets. 
One further change in the move to Version 2 is a reflection of the 
differing needs of network equipment. Some of the benchmarks are 
designed to reflect the performance of client and server systems, while 
others are representations of functions predominantly carried out in 
infrastructure equipment. Typically, routers have no need to process 
information in the TCP layer, and results for tests associated with TCP 
performance will skew the results for those OEMs looking to select the 
best processor for work at the lower IP layer. Therefore, the Networking 
Version 2.0 benchmarks produce two new aggregate “mark” scores: the 
TCPmark and the IPmark. The IPmark is intended for developers of 
infrastructure equipment, while the TCPmark, which includes the TCP 
benchmark, focuses on client- and server-based network hardware. 

IP Packet Processing 
A fundamental part of a network router’s workload is to correctly 
process IP packets. These packets can be out of order, have errors, and 
demand router actions, rather than just being forwarded to the next 
node in the network. 

Whether a packet is to be forwarded to another router or processed and 
sent to a local machine, the first step for all packets is to validate the IP 
header information. This is why a key part of the Version 2 benchmark 
set is the Packet Check benchmark. This benchmark models a significant 
subset of the IP header validation work that is specified in the RFC1812 
standard that defines the requirements for packet checks carried out by 
IP routers. 

In operation, the Packet Check benchmark simulates a router with four 
network interfaces. During initialization, the code creates a buffer and 
generates the data that will represent a block of test packets. The 
initialization code creates a series of packets that indicate the IP 
version, checksum, and length in the header. During this process, the 
code introduces errors into some packet headers and produces a count 
of how many packets have deliberate errors. This count is checked at 
the end to ensure that the benchmark code has executed correctly. 
Using padding between packets, the benchmark specification allows 
packets to be aligned on the best natural word boundary of the 
microprocessor. 

To maintain as much realism as possible, the benchmark has been 
designed to emulate the way in which actual systems process packet 
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headers. For example, the benchmark uses a scheme where descriptors 
are separated from the packet headers. This allows the descriptors to be 
managed as a linked list with each descriptor pointing to an individual IP 
packet header. This demonstrates the processor’s ability to work with 
the branch- and pointer-intensive code found in typical packet-switch 
code bases. Further, by focusing on error handling rather than raw 
packet throughput, the benchmark provides a more realistic check on 
processor behavior rather than just cache-to-memory speed. 

Routing 
Each packet on a large IP network passes through a router, which 
determines whether it should be passed to another router closer to the 
final destination or if the packet should be processed and forwarded to a 
local machine. For the forwarding function, the router must determine 
which other routers are available for forwarding, find the shortest path 
to each, and detect configuration changes in the network of routers. 

Open Shortest Path First (OSPF) is the most popular Internet routing 
protocol used to determine the correct route for packets within IP 
networks. The OSPF benchmark uses this protocol as a representation 
of a processor’s ability to handle routing problems. The OSPF 
benchmark implements Edsger Dijkstra’s shortest-path-first algorithm. 
Shortest-path-first algorithms are processor and memory intensive, 
making them good candidates for stressing high-performance 
processors with large cache subsystems. 

The Dijkstra algorithm finds the shortest, or least-cost, path from a 
specific router to all other routers that the source knows about. It builds 
a table of nodes, where each node is a router. Each node has one or 
more arcs, where each arc is a directed, one-way link to another node. 
These arcs represent links between routers. Each arc has a cost value 
that represents the value of the link. The lower the cost number, the 
more desirable it is to use the link. 

The OSPF benchmark begins by creating a set of nodes and arcs that 
are each connected with a cost computed by the data-generation 
routine. During execution, to emulate the dynamic behavior of OSPF in 
a real-world environment, the code re-initializes the table of arcs and 
nodes after each benchmark run. The benchmark performs a series of 
calculations using the OSPF algorithm to determine the destination port 
for each given route. 

Once the route tables are built using protocols such as OSPF, efficient 
route lookups are fundamental to the performance of network routers. 
The Route Lookup benchmark, the second of the core routing-oriented 
benchmarks, is a distillation of the fundamental task of IP routers, 
which is to receive and forward IP packets based on the information 
found in lookup tables. 

The Route Lookup benchmark uses a mechanism commonly applied to 
commercial network routers. It employs a data structure known as the 
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Patricia Tree. The Patricia Tree is a compact binary tree that allows fast 
and efficient searches with long or unbounded length strings and is 
often used in database searches as well as routing lookups. The 
benchmark monitors the processor’s ability to check the tree for the 
presence of a valid route and walk through the tree to find the 
destination node to which to forward the packet.  

Network Boundary Processing 

The Internet is not a homogeneous network. Organizations will have 
their own network setups that may be incompatible with those used by 
their Internet service providers. A common requirement for network 
equipment is to convert packets as they pass from an internal network 
to the wider Internet. Two of the EEMBC benchmarks address these 
applications, which are typically processor- and memory-intensive. 

An increasingly important function for IP routers that sit on the 
boundary between an organization’s internal network and the Internet is 
Network Address Translation (NAT). NAT is an important function 
because it provides a method to work around the limited number of IP 
addresses and ports on the Internet. Additionally, NAT is normally 
required when a network’s internal IP addresses cannot be used outside 
the network, either because they are not globally unique or because of 
privacy reasons. 

 

Figure 1. The NAT router remaps incoming and outgoing IP addresses. 

 There are two types of NAT, dynamic and static. Dynamic NAT allows a 
large number of clients connected in a LAN to access the Internet using 
a few public addresses available to the router. Static NAT provides a 
means for servers on a LAN to be accessed by clients on the Internet. 

With Dynamic NAT, a client computer sends packets using its local IP 
address and port number to the destination port of “a_server.com”. 
When this packet arrives at the NAT-enabled router, the router rewrites 
the packet, replacing the local IP and local port with its public IP 
address and an available port. The router saves this translation 
information in a table. When a packet arrives from “a_server.com”, the 
router uses the translation information to again re-write the packet, 
restoring the local IP address and the local port number. In both the 
send and receive directions, checksums are also updated to reflect the 
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change in address. 

With Static NAT, a local server is set up to provide service on a port: for 
example, a Web server on TCP port 80. Next, a Static NAT entry is 
defined in the router that maps incoming traffic from the public IP 
address to the local IP address. When a packet arriving from the public 
Internet does not match an IP and port in the Dynamic NAT table, the 
router rewrites the packet with the local IP address in the Static NAT 
entry. 

Dynamic NAT routing represents the bulk of the workload, as all 
outgoing packets are processed through it, plus it has the additional 
complexity of port assignment on the incoming and outgoing packets to 
preserve connections between clients and servers. 

The NAT benchmark creates a series of packets during initialization with 
various source addresses, destination addresses, and random packet 
sizes. Each packet is then wrapped with IP header information. Status 
information is included and the packets are assembled into a list for 
processing. Finally, the NAT rules are added to the table.  

The benchmark then begins processing and rewriting the IP addresses 
and port numbers of packets based on the pre-defined NAT rules. Each 
rewritten packet will have a modified source IP address and source port 
chosen from the available ports of each IP address available to the 
router. In this way, the NAT benchmark simulates an important part of 
network processing for many router designs, performing many of the 
functions of a commercial NAT implementation. 

As Internet traffic passes from one part of the network to another, the 
packets themselves may need to be altered. Each network technology 
has a maximum frame size that defines the Maximum Transfer Unit 
(MTU), or maximum packet size, that can be carried over the network. 
When an IP packet is too large to fit within the MTU of the egress 
interface, it can no longer be transmitted as a single frame. Rather, the 
IP packet must be split up and transmitted in multiple frames. At the 
other end of the link, fragmented packets need to be reassembled. This 
process can place significant resource requirements on systems, making 
processor performance on this type of workload a key consideration. 
Reassembly represents the largest workload, because the router must 
also deal with packets that arrive out of order and with random data 
sizes. 
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Figure 2. IP fragmentation and reassembly splits and recombines 
packets into smaller pieces to accommodate the maximum transfer unit 
of the network. 

 

The IP Reassembly benchmark takes the asymmetric nature of 
fragmentation and reassembly into account and makes intensive use of 
out-of-order delivery and random source-packet sizes to stress the 
processor’s ability to perform reassembly. During benchmark 
initialization, the code generates a list of packet fragments based on 
source packets with random lengths. Buffers are created to hold the 
fragmented packets and used to deliver the fragments so that they do 
not always arrive in order. The random arrival rate is set during data 
creation. The reassembly process is destructive: for memory efficiency, 
the networking code performs reassembly in the same memory space as 
the fragmented packets, simulating the behavior of most network 
routers. 

Quality of Service 
The data carried over the Internet has evolved from text and files—
where timing and order of packet arrival are irrelevant—to voice, video 
and multimedia, where timing and order are critical. Applications that 
process real-time data streams are less tolerant of out-of-order packets 
and long delays between packet arrivals. Normally, when this occurs, a 
connection is dropped and requests to resend the data are initiated. This 
is fine for normal data but leads to breaks in audio and video playback. 
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Figure 3. Many different types of data are carried over the Internet. The 
network must manage the bandwidth to determine priority of delivery. 

 

As real-time traffic increases, the errors and resend requests can 
exceed the overall amount of data to be transferred, resulting in error-
clogged networks and dropped connections for users. Quality of Service 
(QoS) processing addresses this problem by providing the ability to 
measure data-transfer rates, by giving the client guaranteed data 
transfer and error rates that are suitable to support a deterministic 
application. This QoS guarantee significantly reduces the network 
loading due to errors and retransmission and allows these new forms of 
data to flow over the Internet. 

The QoS benchmark simulates the processing undertaken by bandwidth 
management software used to “shape” traffic flows to meet QoS 
requirements. Based on predefined rules, the system paces the delivery 
of the system to the desired speed. This shaping is achieved via the use 
of a variant of the Weighted Fair Queuing (WFQ) algorithm. Random 
Early Detection (RED) queue management is also supported to provide 
flow control. 

The data generation stage of the benchmark constructs a bank of 
packets varying the data size, source, and destination addresses. Next, 
a set of rules that determine routing that support defined data rates are 
entered into the QoS tables. 

The timed portion of the benchmark begins by processing packets 
against the rule set, which determines the routing and addressing 
needed to best preserve the QoS for each stream of packets. As the 
number of packets in the system increases, port diversions begin to 
occur to maintain the QoS, and queues are delayed to wait for available 
pipes as determined by the algorithm. As a result, the benchmark 
demonstrates close alignment with the behavior of real-world QoS 
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algorithms. 

Client and Server Processing 
The benchmarks covered so far have concentrated on the performance 
of processors dealing with traffic at the IP layer. Clients and servers 
need to process higher-level protocols, such as the Transmission Control 
Protocol (TCP). Forming the transport layer protocol used by Internet 
applications such as Telnet, the File Transfer Protocol (FTP), and the 
HyperText Transfer Protocol (HTTP), TCP provides a link that looks, to 
the application, as though it is a direct connection. Because TCP uses 
the services of IP to deliver packets, and IP does not care about the 
order in which complete IP packets are delivered, TCP is designed to 
handle packet re-ordering and re-sending for situations where a router 
may have dropped packets to be able to meet its overall service level 
requirements. 

Different upper-level protocols stress TCP-handling hardware in different 
ways. For example, Telnet consists of short, small bursts of data in 
small packets that result from a user typing commands and receiving 
results. On the other hand, FTP consists of large amounts of data in 
large packets moving in one direction. HTTP is somewhere in the middle 
with bursts of files in one direction intermixed with control and 
handshaking traffic in both directions. This makes the consideration of 
traffic type essential when analyzing the performance of a processor 
that will process TCP-layer traffic. 

EEMBC’s Networking Version 2.0 benchmarks include a TCP benchmark 
that accounts for the different behavior of TCP-based protocols by 
measuring the performance of a processor that handles a workload 
derived from several application models. The TCP benchmark has three 
components to reflect performance in three different network scenarios. 
The first is a Gigabit Ethernet involving large packet transfers to 
represent the likely workload of Internet backbone equipment. The 
second assumes a standard Ethernet network for packet delivery and 
concentrates on large transfers using protocols such as FTP. The last 
uses a standard Ethernet network model for the relay of mixed traffic 
types, including Telnet, FTP, and HTTP. 

The benchmark generates data based on the applications that need to 
be modeled, with packet queues built to simulate both client and server 
traffic. The main part of the benchmark involves processing all of the 
packet queues through a server task, network channel, and client task. 
These simulate the data transfers through the connection to provide a 
realistic view of how the processor will cope with various forms of TCP-
based traffic. 

Summary 
The EEMBC Networking Version 2.0 benchmarks set a new standard for 
the measurement of processors by the combination of client-server 
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framework, multi-user data generation, and real-world application 
kernels defined by the industry. With these new benchmarks, network 
equipment OEMs can be confident that test results will reflect the 
performance that can be obtained from processors in production-quality 
hardware. 

 
 


