
w w w . e e m b c . o r g

software
benchmark
data book

Networking

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 1

Table of Contents

Networking Version 2.0

IP Reassembly..2

IP Packet Check ...4

IP Network Address Translator (NAT) ..6

OSPF ..8

QOS ...9

Route Lookup ..11

Transmission Control Protocol (TCP) ...12

Networking Version 1.1

Packet Flow ...15

OSPF ..17

Route Lookup ..18

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 2

Networking Version 2.0 Benchmark Name: IP Reassembly

Highlights

 Based on NetBSD kernel code

Application When an IP packet is too large to fit within the Maximum Transfer Unit (MTU)
of the egress interface, it can no longer be transmitted as a single frame.
Rather, the IP packet must be fragmented and transmitted in multiple
frames. Dealing with reassembly, the process of reassembling the IP
fragments to form the original packet, can place significant resource
requirements on systems.

Additionally, with the increasingly heterogeneous networking environment of
LANs and WANs, fragmentation becomes increasingly likely.

Benchmark
Description

Based on the NetBSD kernel code, the IP Reassembly benchmark simulates
the processing performed to handle reassembly. The benchmark simulates
the arrival of a large number of IP fragments of varying lengths – ranging
from those requiring just a single mbuf to those requiring a cluster. The
degree of fragmentation, the number of fragments per IP packet, the arrival
order of the fragments, and the number of packets being reassembled in
parallel is configured to represent different networking environments.

When a packet “arrives” it is checked for basic correctness. Its packet ID,
source, and destination parameters are compared with those of all the
packets waiting for reassembly. If the fragment corresponds to a new packet,
a new queue is started to hold the additional fragments that will be required
to reassemble the packet. If the fragment belongs to a packet reassembly
effort already in progress, then the doubly linked list which forms the
reassembly queue is traversed to determine where this fragment belongs in
the packet. Each fragment contains offset information indicating its relative
position to the start of the packet. The new fragment is then inserted into the
linked list at the appropriate position, and because fragment overlap is
possible, it may be necessary to trim (or even dequeue) adjacent fragments.
A check is subsequently made for complete reassembly. If, with the addition
of the current fragment, reassembly is complete, fragment concatenation is
undertaken and the reassembled packet is passed up the stack.

Analysis of
Computing
Resources

1. Tests data caches – large memory requirements test cache size and
replacement algorithms, while aggressive pointer chasing tests latency.

2. Linked list traversal tests processors’ ability to perform loads and
compares and stresses processors’ branch prediction logic and ability to
recover gracefully from misprediction.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 3

Special Notes NetBSD is a secure and highly portable UNIX-like operating system available
for many platforms, from high-end servers to embedded and handheld
devices. The core routines in this benchmark are based on the networking
functionality in the NetBSD operating system.

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

• For Out of the Box, you may not change the algorithm nor the C code

except for the Test Harness, or to get the code to compile. All compiler-
related changes must be documented and must not have a performance
impact.

• For Out of the Box, if the C compiler can schedule for any additional
hardware without code changes, these are allowed. ASM statements are
not allowed. All optimized libraries must be part of the standard compiler
package, and/or available to all customers

• You may use Test Harness Regular or Test Harness Lite. You may not
create your own Test Harness.

• For Optimized, you may re-write the basic algorithm as long as the output
is unchanged.

• For Optimized, you may re-write the code in assembler.
• For Optimized, you may use publicly available optimized libraries, use

hardware-assist if it is on the same processor as that being benchmarked,
and/or inline the code.

• You may not assume that the data files shipped with the benchmark are
the only data files that will be run through the certification run by EEMBC.
However, the distributions will be as specified above.

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 7 February 2007 www.eembc.org

Networking Version 2.0 Benchmark Name: IP Packet
Check

Highlights
 Simulates a network router with

four data sets to compare memory
bus effects

 Focuses on checksum calculations
and logical compare operations

Application The IP Packet Check benchmark performs a subset (essentially the IP Header
Validation) of the network layer forwarding function of the Internet protocol
suite as specified in RFC1812, "Requirements for IP Version 4 Routers" which
can be found at http://www.faqs.org/rfcs/rfc1812.html. The benchmark
provides an indication of the potential performance of a microprocessor in an
IP router system.

A TCP/IP router normally examines the IP protocol header as part of the
switching process. It generally removes the Link Layer header from a received
message, modifies the IP header, and replaces the Link Layer header for
retransmission. In this benchmark, the Link Layer header has already been
removed and will not be replaced, i.e. all processing is done at Layer 3, on the
assumption that lower level functions are handled by hardware or an interrupt
service routine.

Benchmark
Description

The benchmark simulates a router with four network interfaces. It initializes a
buffer of programmable size (512 KB, 1 MB, 2 MB and 4 MB for reporting
purposes) with IP datagrams. The header is always the minimum 20 bytes and
is made up random characters except in the byte positions to be checked (IP
version, checksum, and length). A checksum for the IP header is calculated
and stored in each datagram. Errors are introduced in certain headers and an
error count is logged. Datagrams are allowed to be aligned on the best natural
boundary of the microprocessor and padding is added between them.

As a benchmark, the IP packet size is chosen randomly to be either 46 bytes
(small packets) or 1500 bytes (large packets) in size. Packet receipt is
simulated by creating a dummy store queue of 512 KB (approximately 370
packets), 1 MB (~720 packets), 2 MB (~1400 packets) or 4 MB (~2800
packets) outside of the timing loop. One timed iteration of the benchmark
consists of processing each packet header pointed to by the receive queue and
moving the descriptor to a holding queue. Results are reported in iterations per
second for each of the buffer sizes but can be equated to packets per second
by the conversion of ~660, ~1320, ~2640 or ~5280 packet headers checked
per iteration, respectively.

Two descriptor queues are created with a pointer to the next descriptor and a
pointer to the datagram header. One queue is called the receive queue
(rx_queue in the code) and the other queue is the holding queue (hold_que in
the code). IP datagrams are often stored like this in actual systems using
descriptors that are separate from the datagram. A descriptor has a next

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 7 February 2007 www.eembc.org

member that allows it to be put in a linked list and a pointer to a datagram.

Benchmark
Description
(continued)

As each datagram is processed by the benchmark algorithm it is removed from
the receive queue and placed in the holding queue. Processing consists of:

1. Checking that the packet length is large enough to hold the minimum
length legal IP datagram (>=20 bytes).

2. Checking that the IP checksum is correct (a bad packet counter is
incremented if the checksum is not correct)

3. Checking that the IP version number is 4
4. Checking that the IP header length field is large enough to hold the

minimum length legal IP datagram (20 bytes = 5 words)
5. Checking that the IP total length field is large enough to hold the IP

datagram header, whose length is specified in the IP header length field

Cache route lookup, the routing decision, and test for local delivery, which
would normally be a part of packet routing are not implemented in Version 1.0
of this benchmark. Cache route lookup, however, is implemented in the EEMBC
Route Lookup benchmark and those results can be combined with IP Packet
Check to get a better indication of microprocessor performance in an IP router
system.

A single iteration of the benchmark is complete when the receive queue of
packet descriptors is empty. At the end of one iteration, the receive queue and
the holding queue are switched allowing the next iteration to execute with a
full receive queue.

Analysis of
Computing
Resources

The IP Packet Check benchmark performs integer math on 16 bit unsigned
quantities (the checksum calculation) and shift and logical compare operations
(the IP version number and length checks). These operations and accessing
the data from memory are primarily what is tested by this benchmark. Though
the buffer sizes in memory are large, the checksum and verification process is
only over the IP headers, which tend to take up residence in cache; therefore
even at the largest buffer sizes, this benchmark has a high cache hit rate for
microprocessors with 32KB of Data Cache. (The headers and packet
descriptors for a 1MB buffer come very close to fitting in 32 KB of L1.) The
code size is trivial and easily fits in even a small L1 Instruction Cache.

Special
Notes

Do not directly compare the results of IP Packet Check benchmark to EEMBC
Networking Version 1 Packet Flow benchmark. Even though the two
benchmarks test the same function, the algorithm was changed in IP Packet
Check to allow a user specified alignment without impacting the number
packets processed.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 6

Networking Version 2.0 Benchmark Name: IP

Network Address Translator
(NAT)

Highlights
 Based on NetBSD kernel code ▪ Stresses data cache efficiency and

latency

Application Basic Network Address Translation (NAT) is a method by which an Internet
router maps IP addresses from one group to another, transparent to end
users. NAT is traditionally required when a network’s internal IP addresses
cannot be used outside the network, either because they are not globally
unique, or for privacy reasons.

A NAT router, residing on the border between two networks, translates the
addresses in the IP headers so that when the packet leaves one network and
enters another, it can be correctly routed. For egress packets, the source
address is mapped to a globally unique external network address, while, for
ingress packets, the destination address is mapped from the external address
to the relevant address in the private network. IP header checksums (and UDP
and TCP checksums if applicable) are also updated to reflect the address
translation.

Benchmark
Description

The dataset for the NAT benchmark focuses on the handling of egress packets.
When a packet “arrives,” initial processing ascertains what action, if any, needs
to be undertaken. The NetBSD NAT implementation uses a 128-entry hash
table to hold information about current connections. By using the source
address, destination address, protocol, and ports (if applicable) of the packet,
the system computes an offset into the hash table. If this entry in the hash
table relates to the current packet, the packet belongs to a “connection” that is
already established and the packet processing is undertaken as dictated by the
NAT table entry. If the packet doesn't belong to a current connection, the list
of NAT rules are searched to ascertain if a rule exists for the packet handling.
If a rule exists for this “connection” (rules are specified during an initialization
phase before the benchmark is started), the system creates an entry in the
hash table for this “connection” to accelerate future handling of packets for this
connection.

If the packet is determined to correspond to a NAT entry, the source address
of the packet is altered as stipulated by the pertinent rule. The IP header
checksum is then fixed to reflect this modification. Additionally, if the packet is
a TCP packet, the TCP checksum is also updated to reflect the modification in
source address. The translated packet is then sent onward.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 7

Analysis of
Computing
Resources

Aggressive pointer chasing tests cache latency. Hash table searching tests
processors' ability to perform loads and compares and stresses processors'
branch prediction logic and ability to recover gracefully from misprediction.

Special
Notes

P. Srisuresh, “IP Network Address Translator (NAT) Terminology and
Considerations,” RFC2663, August 1999.
P. Srisuresh et al, “Traditional IP Network Address Translator (Traditional
NAT),” RFC3022, January 2001.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 8

Networking Version 2.0

Benchmark Name: OSPF

Highlights

 Benchmarks Potential Performance
of Routers

Application The OSPF (Open Shortest Path First)/Dijkstra benchmark implements the

Dijkstra shortest path first algorithm, which is widely used in routers and
other networking equipment.

Benchmark
Description

The Dijkstra algorithm finds the shortest, or least cost path, from a specific
router (called the source) to all other routers that the source knows about.
It builds a table of nodes where each node is a router. Each node has one or
more “arcs” where each arc is a directed (one way) link to another node.
These arcs represent links between routers. Each arc has a cost value that
represents the 'value' of the link. The lower the cost number, the more
desirable it is to use the link.

The Dijkstra algorithm starts at a source (or root) node. It then computes
the best-case cost, or shortest route of all the other nodes in the network in
relation to the source node.

There are two tables, arc_base and node_base. Each table is initialized
before the benchmark starts and then reinitialized after each iteration of the
benchmark, so that each iteration does exactly the same thing.

Instead of building a predefined route, the standard method in this
benchmark builds the routing tables dynamically.

Analysis of
Computing
Resources

The benchmark repeatedly walks the list that is used to hold the nodes.
Consequently, a processor's load-use latency and its ability to handle
frequent CTI (control transfer instructions) operations are an important
factor in this benchmark.

Special
Notes

1. Do not directly compare Version 2.0 results to results of Version 1.The
dataset in Version 2.0 has been significantly changed from the Version 1
implementation to improve the quality and real-world nature of this
benchmark.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 9

Networking Version 2.0 Benchmark Name: QOS

Highlights
 Based on NetBSD kernel code

Application This benchmark simulates the processing undertaken by bandwidth
management software used to “shape” traffic flows to meet Quality of Service
(QoS) requirements. The system paces the delivery of the packets to the
desired speed, based on a set of predefined rules. This shaping is achieved via
the use of a variant of the Weighted Fair Queuing (WFQ) algorithm. Random
Early Detection (RED) queue management is also supported to provide flow
control.

Benchmark
Description

The overall structure for the QoS system is as follows (largely based on
documentation provided with the Dummynet QoS system):

In the QoS system, egress packets are selected based on rules established
during the initialization phase, and passed to two different objects: “pipe” or
“queue.”

A queue is just a queue with configurable size and queue management policy.
It is also associated with a mask (to discriminate among different flows), a
weight (used to give different shares of the bandwidth to different flows) and a
pipe, which essentially supplies the transmit clock for all queues associated
with that pipe.

A pipe emulates a fixed-bandwidth link, whose bandwidth is configurable. The
"clock" for a pipe is incremented every iteration in the benchmark. A pipe is
also associated with one (or more, if masks are used) queue, where all packets
for that pipe are stored.

The bandwidth available on the pipe is shared by the queues associated with
that pipe (only one in case the packet is sent to a pipe) according to the
WF2Q+ scheduling algorithm and the configured weights.

Egress packets are stored in the appropriate queue, which is then placed into
one of a few heaps managed by a scheduler to decide when the packet should
be extracted. The scheduler is run once per iteration, and grabs queues from
the head of the heaps when they are ready for processing.

There are three data structures defining a pipe and associated queues:
1. dn_pipe, which contains the main configuration parameters related to

bandwidth
2. dn_flow_set, which contains WF2Q+ configuration information
3. dn_flow_queue, which is the per-flow queue (containing the packets)

Multiple dn_flow_set can be linked to the same pipe, and multiple
dn_flow_queue can be linked to the same dn_flow_set. All data structures are
linked in a linear list which is used for housekeeping purposes.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 10

Benchmark
Description
(continued)

During configuration, the dn_flow_set and dn_pipe structures (a dn_pipe also
contains a dn_flow_set) are created and initialized.

At runtime, packets are sent to the appropriate dn_flow_set (either WFQ
ones, or the one embedded in the dn_pipe for fixed-rate flows), which in turn
dispatches them to the appropriate dn_flow_queue (created dynamically
according to the masks).

The transmit clock for fixed rate flows (ready_event()) selects the
dn_flow_queue to be used to transmit the next packet. For WF2Q,
wfq_ready_event() extracts a pipe which in turn selects the right flow using a
number of heaps defined into the pipe itself.

The current dataset sends packets directly to a pipe and utilizes fixed rate
flows.

Analysis of
Computing
Resources

QoS is a memory intensive benchmark – large memory requirements test data
cache misses, while long sequences of dependent loads test memory latency.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 11

Networking Version 2.0 Benchmark Name: Route
Lookup

Highlights

 Benchmarks Potential Performance of Routers

Application This benchmark is a distillation of the fundamental operation of IP datagram

routers: receiving and forwarding IP datagrams.

Benchmark
Description

All IP routers keep a table that allows it to lookup IP addresses and
determine to which port an incoming IP datagram should be forwarded. This
benchmark implements an IP lookup mechanism based on a Patricia Tree
(or trie). The Patricia tree data structure is a type of binary, compact tree
that allows fast and efficient searches with long or unbounded length
strings. The number of search steps is bounded by the length of the search
key e.g. 32-bit IPv4 addresses.

The benchmark builds a tree from the IP address data supplied in route.txt
(200 routes). After the tree is initialized, the benchmark calls the function
pat_search() for each IP address in lookups.txt (2000 lookups). One pass
through this data is regarded as a single interation.

Analysis of
Computing
Resources

The benchmark repeatedly walks through the trie. Consequently, a
processor’s load-use latency and its ability to efficiently handle frequent CTI
(control transfer instructions) operations are an important factor in this
benchmark.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 12

Networking Version 2.0 Benchmark Name:
Transmission Control

Protocol (TCP)

Highlights
 Captures most frequently used and most

processing-intensive portion of RFC793
protocol

 Simulates TCP traffic characteristics in
real networks

 De-couples processor speed from
any randomness in TCP operation

 Uses three different data sets to
simulate a variety of workloads

Application The ability of an embedded processor to handle Transmission Control
Protocol (TCP) layer processing is an important consideration for avoiding
bottlenecks in network equipment designs. Unlike ATM and some other
network protocols that are mainly processed by network processors, ASICs,
or specialized hardware blocks directly attached to general purpose
processors, the TCP layer is often processed by the CPUs in general-
purpose processors. The interest of benchmarking TCP performance on
embedded general-purpose processors has increased with the connection of
more and more embedded devices to the network. The flexibility of TCP is
such that it is used in wireline and wireless applications.

The ISO reference model is commonly used when discussing protocol
layering. This model depicts the TCP layer as sitting on top of the Internet
Protocol (IP) layer and under the application layer. The function of IP is to
provide a means of transferring TCP segments over inter-connected
networks. IP has unique addressing information for each network element,
and data communication is based on routing that provides best effort
service to TCP and other transmission control layer protocols like UDP.

In contrast to IP, TCP service is a reliable, connection-oriented byte stream
service. It typically interfaces with an unreliable network layer protocol.
Unlike other connection-oriented protocols that are based on a reliable
network layer, TCP has to implement a more complex transmission control
scheme to overcome these seemingly contradictory philosophies between
protocol layers.

The basic operation of TCP can be broken down into the following six areas:

1. Basic data transfer
2. Reliability
3. Flow control
4. Multiplexing
5. Connections
6. Precedence and security

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 13

Application The core of the TCP protocol is to transfer data between two connection

endpoints. Like data processing in most of the network protocols, large
data blocks are chopped into optimized sizes (as deemed by TCP) and
encapsulated in a TCP segment. Communications in TCP involve both data
and control operations. Comparing data processing with other protocols,
the biggest difference with TCP is a mandatory checksum across the entire
segment. This is because TCP provides reliable communication service on
top of an unreliable IP layer. For the same reason, TCP requires fairly
complex control and signaling to achieve reliability, efficiency, and
connection management. Compared with IP, data operations are simpler
but are more expensive in terms of performance. The cost associated with
the data block size is linear in most of the cases. (For example, computing
IP style checksum and memory copy.) The benchmark captures all the
costly data manipulations while some of the complex but rarely used
control logic can be omitted.

Benchmark
Description

This benchmark implementation captures the most frequently used and
processing-intensive portion of the protocol described in RFC793. The
benchmark measures the data and buffer management performance,
which is common and expensive in TCP implementations. Also, because
this benchmark targets embedded general-purpose processors, the
execution environment should match code size and memory scale.
Typically, execution environments include a reasonably-sized memory and
high-performance RTOS with shared kernel and user addressing spaces.
The scope of this benchmark does not include measuring overall network
performance.

EEMBC’s TCP benchmark follows these general requirement guidelines:
Accurate – the benchmark captures all major TCP operations in terms of
processing cost

Realistic – the benchmark simulates TCP traffic characteristics in real
networks

Deterministic – the benchmark de-couples processor speed from any
randomness in TCP operation

Simplistic – the benchmark implementation allows for a simplified TCP
implementation with reasonable assumptions

Application protocols that use bulk transfer contribute 90% of the traffic in
terms of number of bytes but represent only about half the packets. The
TCP benchmark is designed to be flexible enough to capture processor
performance for both transfer types.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 14

Benchmark performance metrics include:

1. Complete event-driven TCP state machine, connection management
signaling

2. Transient behavior in short TCP conversations
3. Buffer management – Data manipulation in both ingress and egress

directions
4. Queue management – Send queue, unacknowledged queues in

egress direction
5. Separate re-entrant client-server task with context switching
6. Basic flow control
7. Multiple data stream (phase II)
8. Configurable packet size distribution for different traffic patterns

RFC793 requirements that are not included in benchmark include:

1. Real-time timer related – RTT estimation and update, RTO
2. Exception handling, out-of-order delivery, duplicates and lost

packets

TCP behavior varies dramatically between different applications. Packet
sizes, conversation length, and queue depth can all affect processing in
different ways. To cope with different scenarios, the benchmark is
configurable. In addition, the following four standard test cases were
designed based on representative statistical data.

Parameters/Tests
The application data block processed between the client and server is
constructed as a ring or circular buffer based on the segment size, and
number of packets in the workload.

1. Bulk data transfer test uses maximum TCP segment size (which is
typically used in FTP data channel)

2. Jumbo test uses MTU sizes, and numbers of packets applicable to a
Gigabit Ethernet Backbone.

3. Mixed packet sizes is an average case Standard Ethernet – mixture
of activity

Analysis of
Computing
Resources

Each workload simulates network traffic using the following steps:
1. Initiate server task.
2. Insert network channel effect
3. Initiate client task
4. Insert network channel operations of client.

This workload is repeated until all client connections are closed.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 15

Networking Version 1.1 Benchmark Name: Packet

Flow
Highlights

 Simulates a network router with
three data sets to compare
memory bus effects

 Focuses on checksum calculations
and logical compare operations

Application The Packet Flow benchmark performs a subset (essentially the IP Header

Validation) of the network layer forwarding function of the Internet protocol
suite as specified in RFC1812, "Requirements for IP Version 4 Routers" which
can be found at http://www.faqs.org/rfcs/rfc1812.html. The benchmark
provides an indication of the potential performance of a microprocessor in an
IP router system.

A TCP/IP router normally examines the IP protocol header as part of the
switching process. It generally removes the Link Layer header from a
received message, modifies the IP header, and replaces the Link Layer
header for retransmission. In this benchmark, the Link Layer header has
already been removed and will not be replaced, i.e. all processing is done at
Layer 3, on the assumption that lower level functions are handled by
hardware or an interrupt service routine.

Benchmark
Description

The benchmark simulates a router with four network interfaces. It initializes a
buffer of programmable size (512KB, 1MB, and 2MB for reporting purposes)
with IP datagrams. The header is always the minimum 20 bytes and is made
up random characters except in the byte positions to be checked (IP version,
checksum, and length). A checksum for the IP header is calculated and
stored in each datagram. Errors are introduced in certain headers and an
error count is logged. Datagrams are allowed to be aligned on the best
natural boundary of the microprocessor and padding is added between them.

As a benchmark, the IP packet size is chosen randomly to be either 46 bits
(small packets) or 1500 bits (large packets) in size. Packet receipt is
simulated by creating a dummy store queue of 512KB (approximately 660
packets), 1MB (~1320 packets), or 2MB (~2640 packets) outside of the
timing loop. One timed iteration of the benchmark consists of processing each
packet header pointed to by the receive queue and moving the descriptor to
a holding queue. Results are reported in iterations per second for each of the
buffer sizes but can be equated to packets per second by the conversion of
~660, ~1320, or ~2640 packet headers checked per iteration, respectively.

Two descriptor queues are created with a pointer to the next descriptor and a
pointer to the datagram header. One queue is called the receive queue
(rx_queue in the code) and the other queue is the holding queue (hold_que
in the code). IP datagrams are often stored like this in actual systems using
descriptors that are separate from the datagram. A descriptor has a next
member that allows it to be put in a linked list and a pointer to a datagram.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 16

As each datagram is processed by the benchmark algorithm it is removed
from the receive queue and placed in the holding queue. Processing consists
of:

6. Checking that the packet length is large enough to hold the minimum
length legal IP datagram (>=20 bytes).

7. Checking that the IP checksum is correct (a bad packet counter is
incremented if the checksum is not correct)

8. Checking that the IP version number is 4
9. Checking that the IP header length field is large enough to hold the

minimum length legal IP datagram (20 bytes = 5 words)
10. Checking that the IP total length field is large enough to hold the IP

datagram header, whose length is specified in the IP header length
field

Cache route lookup, the routing decision, and test for local delivery, which
would normally be a part of packet routing are not implemented in Version
1.0 of this benchmark. Cache route lookup, however, is implemented in the
EEMBC Route Lookup benchmark and those results can be combined with
Packet Flow to get a better indication of microprocessor performance in an IP
router system.

A single iteration of the benchmark is complete when the receive queue of
packet descriptors is empty. At the end of one iteration, the receive queue
and the holding queue are switched allowing the next iteration to execute
with a full receive queue.

Analysis of
Computing
Resources

The Packet Flow benchmark performs integer math on 16 bit unsigned
quantities (the checksum calculation) and shift and logical compare
operations (the IP version number and length checks). These operations and
accessing the data from memory are primarily what is tested by this
benchmark. Though the buffer sizes in memory are large, the checksum and
verification process is only over the IP headers, which tend to take up
residence in cache; therefore even at the largest buffer sizes, this benchmark
has a high cache hit rate for microprocessors with 32KB of Data Cache. (The
headers and packet descriptors for a 1MB buffer come very close to fitting in
32KB of L1.) The code size is trivial and easily fits in even a small L1
Instruction Cache.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 17

Networking Version 1.1 Benchmark Name: OSPF
Highlights

 Benchmarks Potential Performance
of Routers

Application The OSPF (Open Shortest Path First)/Dijkstra benchmark implements the

Dijkstra shortest path first algorithm, which is widely used in routers and
other networking equipment.

Benchmark
Description

The Dijkstra algorithm finds the shortest, or least cost path, from a specific
router (called the source) to all other routers that the source knows about.
It builds a table of nodes where each node is a router. Each node has one or
more “arcs” where each arc is a directed (one way) link to another node.
These arcs represent links between routers. Each arc has a cost value that
represents the 'value' of the link. The lower the cost number, the more
desirable it is to use the link.

The Dijkstra algorithm starts at a source (or root) node. It then computes
the best-case cost, or shortest route of all the other nodes in the network in
relation to the source node.

There are two tables, arc_base and node_base. Each table is initialized
before the benchmark starts and then reinitialized after each iteration of the
benchmark, so that each iteration does exactly the same thing.

Instead of building a predefined route, the standard method in this
benchmark builds the routing tables dynamically.

Analysis of
Computing
Resources

The benchmark repeatedly walks the list that is used to hold the nodes.
Consequently, a processor's load-use latency and its ability to handle
frequent CTI (control transfer instructions) operations are an important
factor in this benchmark.

 An Industry-Standard Benchmark Consortium

EEMBC Networking Data Book www.eembc.org 18

Networking Version 1.1 Benchmark Name: Route

Lookup

Highlights

 Benchmarks Potential Performance
of Routers

Application This benchmark is a distillation of the fundamental operation of IP datagram

routers: receiving and forwarding IP datagrams.

Benchmark
Description

All IP routers keep a table that allows it to lookup IP addresses and
determine to which port an incoming IP datagram should be forwarded. This
benchmark implements an IP lookup mechanism based on a Patricia Tree
(or trie). The Patricia tree data structure is a type of binary, compact tree
that allows fast and efficient searches with long or unbounded length
strings. The number of search steps is bounded by the length of the search
key e.g. 32-bit IPv4 addresses.

The benchmark builds a tree from the IP address data supplied in route.txt.
After the tree is initialized, the benchmark calls the function pat_search()
for each IP address in lookups.txt. One pass through this data is regarded
as a single interation.

Analysis of
Computing
Resources

The benchmark repeatedly walks through the trie. Consequently, a
processor's load-use latency and its ability to efficiently handle frequent CTI
(control transfer instructions) operations are an important factor in this
benchmark.

