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Networking Version 2.0 Benchmark Name: IP Reassembly

 
Highlights 

 Based on NetBSD kernel code  
 
 

Application When an IP packet is too large to fit within the Maximum Transfer Unit (MTU) 
of the egress interface, it can no longer be transmitted as a single frame. 
Rather, the IP packet must be fragmented and transmitted in multiple 
frames. Dealing with reassembly, the process of reassembling the IP 
fragments to form the original packet, can place significant resource 
requirements on systems. 
 
Additionally, with the increasingly heterogeneous networking environment of 
LANs and WANs, fragmentation becomes increasingly likely. 
 

Benchmark 
Description 

Based on the NetBSD kernel code, the IP Reassembly benchmark simulates 
the processing performed to handle reassembly. The benchmark simulates 
the arrival of a large number of IP fragments of varying lengths – ranging 
from those requiring just a single mbuf to those requiring a cluster. The 
degree of fragmentation, the number of fragments per IP packet, the arrival 
order of the fragments, and the number of packets being reassembled in 
parallel is configured to represent different networking environments. 
 
When a packet “arrives” it is checked for basic correctness. Its packet ID, 
source, and destination parameters are compared with those of all the 
packets waiting for reassembly. If the fragment corresponds to a new packet, 
a new queue is started to hold the additional fragments that will be required 
to reassemble the packet. If the fragment belongs to a packet reassembly 
effort already in progress, then the doubly linked list which forms the 
reassembly queue is traversed to determine where this fragment belongs in 
the packet. Each fragment contains offset information indicating its relative 
position to the start of the packet. The new fragment is then inserted into the 
linked list at the appropriate position, and because fragment overlap is 
possible, it may be necessary to trim (or even dequeue) adjacent fragments. 
A check is subsequently made for complete reassembly. If, with the addition 
of the current fragment, reassembly is complete, fragment concatenation is 
undertaken and the reassembled packet is passed up the stack. 
 

Analysis of 
Computing 
Resources 

1. Tests data caches – large memory requirements test cache size and 
replacement algorithms, while aggressive pointer chasing tests latency.  

2. Linked list traversal tests processors’ ability to perform loads and 
compares and stresses processors’ branch prediction logic and ability to 
recover gracefully from misprediction. 
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Special Notes NetBSD is a secure and highly portable UNIX-like operating system available 
for many platforms, from high-end servers to embedded and handheld 
devices. The core routines in this benchmark are based on the networking 
functionality in the NetBSD operating system. 

Optimizations 
Allowed 

Out of the Box / Standard C 
Full Fury / Optimized 
 
• For Out of the Box, you may not change the algorithm nor the C code 

except for the Test Harness, or to get the code to compile.  All compiler-
related changes must be documented and must not have a performance 
impact. 

• For Out of the Box, if the C compiler can schedule for any additional 
hardware without code changes, these are allowed.  ASM statements are 
not allowed.  All optimized libraries must be part of the standard compiler 
package, and/or available to all customers 

• You may use Test Harness Regular or Test Harness Lite.  You may not 
create your own Test Harness. 

• For Optimized, you may re-write the basic algorithm as long as the output 
is unchanged. 

• For Optimized, you may re-write the code in assembler. 
• For Optimized, you may use publicly available optimized libraries, use 

hardware-assist if it is on the same processor as that being benchmarked, 
and/or inline the code. 

• You may not assume that the data files shipped with the benchmark are 
the only data files that will be run through the certification run by EEMBC.  
However, the distributions will be as specified above. 
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Networking Version 2.0 Benchmark Name: IP Packet 
Check 

 

Highlights 
 Simulates a network router with 

four data sets to compare memory 
bus effects 

 Focuses on checksum calculations 
and logical compare operations 

  
 
 

Application The IP Packet Check benchmark performs a subset (essentially the IP Header 
Validation) of the network layer forwarding function of the Internet protocol 
suite as specified in RFC1812, "Requirements for IP Version 4 Routers" which 
can be found at http://www.faqs.org/rfcs/rfc1812.html. The benchmark 
provides an indication of the potential performance of a microprocessor in an 
IP router system. 
 
A TCP/IP router normally examines the IP protocol header as part of the 
switching process. It generally removes the Link Layer header from a received 
message, modifies the IP header, and replaces the Link Layer header for 
retransmission. In this benchmark, the Link Layer header has already been 
removed and will not be replaced, i.e. all processing is done at Layer 3, on the 
assumption that lower level functions are handled by hardware or an interrupt 
service routine. 
 

Benchmark 
Description 

The benchmark simulates a router with four network interfaces. It initializes a 
buffer of programmable size (512 KB, 1 MB, 2 MB and 4 MB for reporting 
purposes) with IP datagrams. The header is always the minimum 20 bytes and 
is made up random characters except in the byte positions to be checked (IP 
version, checksum, and length). A checksum for the IP header is calculated 
and stored in each datagram. Errors are introduced in certain headers and an 
error count is logged. Datagrams are allowed to be aligned on the best natural 
boundary of the microprocessor and padding is added between them.  
 
As a benchmark, the IP packet size is chosen randomly to be either 46 bytes 
(small packets) or 1500 bytes (large packets) in size. Packet receipt is 
simulated by creating a dummy store queue of 512 KB (approximately 370 
packets), 1 MB (~720 packets), 2 MB (~1400 packets) or 4 MB (~2800 
packets) outside of the timing loop. One timed iteration of the benchmark 
consists of processing each packet header pointed to by the receive queue and 
moving the descriptor to a holding queue. Results are reported in iterations per 
second for each of the buffer sizes but can be equated to packets per second 
by the conversion of ~660, ~1320, ~2640 or ~5280 packet headers checked 
per iteration, respectively. 
 
Two descriptor queues are created with a pointer to the next descriptor and a 
pointer to the datagram header. One queue is called the receive queue 
(rx_queue in the code) and the other queue is the holding queue (hold_que in 
the code). IP datagrams are often stored like this in actual systems using 
descriptors that are separate from the datagram. A descriptor has a next 
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member that allows it to be put in a linked list and a pointer to a datagram. 
 

Benchmark 
Description 
(continued) 

As each datagram is processed by the benchmark algorithm it is removed from 
the receive queue and placed in the holding queue. Processing consists of: 

1. Checking that the packet length is large enough to hold the minimum 
length legal IP datagram (>=20 bytes). 

2. Checking that the IP checksum is correct (a bad packet counter is 
incremented if the checksum is not correct) 

3. Checking that the IP version number is 4 
4. Checking that the IP header length field is large enough to hold the 

minimum length legal IP datagram (20 bytes = 5 words) 
5. Checking that the IP total length field is large enough to hold the IP 

datagram header, whose length is specified in the IP header length field 
 
Cache route lookup, the routing decision, and test for local delivery, which 
would normally be a part of packet routing are not implemented in Version 1.0 
of this benchmark. Cache route lookup, however, is implemented in the EEMBC 
Route Lookup benchmark and those results can be combined with IP Packet 
Check to get a better indication of microprocessor performance in an IP router 
system. 
 
A single iteration of the benchmark is complete when the receive queue of 
packet descriptors is empty. At the end of one iteration, the receive queue and 
the holding queue are switched allowing the next iteration to execute with a 
full receive queue. 

 
 

Analysis of 
Computing 
Resources 

The IP Packet Check benchmark performs integer math on 16 bit unsigned 
quantities (the checksum calculation) and shift and logical compare operations 
(the IP version number and length checks). These operations and accessing 
the data from memory are primarily what is tested by this benchmark. Though 
the buffer sizes in memory are large, the checksum and verification process is 
only over the IP headers, which tend to take up residence in cache; therefore 
even at the largest buffer sizes, this benchmark has a high cache hit rate for 
microprocessors with 32KB of Data Cache. (The headers and packet 
descriptors for a 1MB buffer come very close to fitting in 32 KB of L1.) The 
code size is trivial and easily fits in even a small L1 Instruction Cache. 
 

Special 
Notes 

Do not directly compare the results of IP Packet Check benchmark to EEMBC 
Networking Version 1 Packet Flow benchmark. Even though the two 
benchmarks test the same function, the algorithm was changed in IP Packet 
Check to allow a user specified alignment without impacting the number 
packets processed. 
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Networking Version 2.0 Benchmark Name: IP 

Network Address Translator 
(NAT) 

 

Highlights 
 Based on NetBSD kernel code ▪ Stresses data cache efficiency and 

latency 
 

Application Basic Network Address Translation (NAT) is a method by which an Internet 
router maps IP addresses from one group to another, transparent to end 
users. NAT is traditionally required when a network’s internal IP addresses 
cannot be used outside the network, either because they are not globally 
unique, or for privacy reasons. 
 
A NAT router, residing on the border between two networks, translates the 
addresses in the IP headers so that when the packet leaves one network and 
enters another, it can be correctly routed. For egress packets, the source 
address is mapped to a globally unique external network address, while, for 
ingress packets, the destination address is mapped from the external address 
to the relevant address in the private network. IP header checksums (and UDP 
and TCP checksums if applicable) are also updated to reflect the address 
translation. 
 

Benchmark 
Description 

The dataset for the NAT benchmark focuses on the handling of egress packets. 
When a packet “arrives,” initial processing ascertains what action, if any, needs 
to be undertaken. The NetBSD NAT implementation uses a 128-entry hash 
table to hold information about current connections. By using the source 
address, destination address, protocol, and ports (if applicable) of the packet, 
the system computes an offset into the hash table. If this entry in the hash 
table relates to the current packet, the packet belongs to a “connection” that is 
already established and the packet processing is undertaken as dictated by the 
NAT table entry. If the packet doesn't belong to a current connection, the list 
of NAT rules are searched to ascertain if a rule exists for the packet handling. 
If a rule exists for this “connection” (rules are specified during an initialization 
phase before the benchmark is started), the system creates an entry in the 
hash table for this “connection” to accelerate future handling of packets for this 
connection.  
 
If the packet is determined to correspond to a NAT entry, the source address 
of the packet is altered as stipulated by the pertinent rule. The IP header 
checksum is then fixed to reflect this modification. Additionally, if the packet is 
a TCP packet, the TCP checksum is also updated to reflect the modification in 
source address. The translated packet is then sent onward. 
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Analysis of 
Computing 
Resources 

Aggressive pointer chasing tests cache latency. Hash table searching tests 
processors' ability to perform loads and compares and stresses processors' 
branch prediction logic and ability to recover gracefully from misprediction. 
 

Special 
Notes 

P. Srisuresh, “IP Network Address Translator (NAT) Terminology and 
Considerations,” RFC2663, August 1999. 
P. Srisuresh et al, “Traditional IP Network Address Translator (Traditional 
NAT),” RFC3022, January 2001. 
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Networking Version 2.0 
 

Benchmark Name: OSPF 
 

Highlights 

 Benchmarks Potential Performance 
of Routers 

 

 
Application The OSPF (Open Shortest Path First)/Dijkstra benchmark implements the 

Dijkstra shortest path first algorithm, which is widely used in routers and 
other networking equipment. 

  
Benchmark 
Description 

The Dijkstra algorithm finds the shortest, or least cost path, from a specific 
router (called the source) to all other routers that the source knows about. 
It builds a table of nodes where each node is a router. Each node has one or 
more “arcs” where each arc is a directed (one way) link to another node. 
These arcs represent links between routers. Each arc has a cost value that 
represents the 'value' of the link. The lower the cost number, the more 
desirable it is to use the link.  
 
The Dijkstra algorithm starts at a source (or root) node. It then computes 
the best-case cost, or shortest route of all the other nodes in the network in 
relation to the source node. 
 
There are two tables, arc_base and node_base. Each table is initialized 
before the benchmark starts and then reinitialized after each iteration of the 
benchmark, so that each iteration does exactly the same thing. 
 
Instead of building a predefined route, the standard method in this 
benchmark builds the routing tables dynamically. 
 

Analysis of 
Computing 
Resources 

The benchmark repeatedly walks the list that is used to hold the nodes. 
Consequently, a processor's load-use latency and its ability to handle 
frequent CTI (control transfer instructions) operations are an important 
factor in this benchmark.  

 
Special 
Notes 

1. Do not directly compare Version 2.0 results to results of Version 1.The 
dataset in Version 2.0 has been significantly changed from the Version 1 
implementation to improve the quality and real-world nature of this 
benchmark. 
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Networking Version 2.0 Benchmark Name: QOS 

 

Highlights 
 Based on NetBSD kernel code  

 

Application This benchmark simulates the processing undertaken by bandwidth 
management software used to “shape” traffic flows to meet Quality of Service 
(QoS) requirements. The system paces the delivery of the packets to the 
desired speed, based on a set of predefined rules. This shaping is achieved via 
the use of a variant of the Weighted Fair Queuing (WFQ) algorithm. Random 
Early Detection (RED) queue management is also supported to provide flow 
control. 

Benchmark 
Description 

The overall structure for the QoS system is as follows (largely based on 
documentation provided with the Dummynet QoS system): 
 
In the QoS system, egress packets are selected based on rules established 
during the initialization phase, and passed to two different objects: “pipe” or 
“queue.” 
 
A queue is just a queue with configurable size and queue management policy. 
It is also associated with a mask (to discriminate among different flows), a 
weight (used to give different shares of the bandwidth to different flows) and a 
pipe, which essentially supplies the transmit clock for all queues associated 
with that pipe. 
 
A pipe emulates a fixed-bandwidth link, whose bandwidth is configurable. The 
"clock" for a pipe is incremented every iteration in the benchmark. A pipe is 
also associated with one (or more, if masks are used) queue, where all packets 
for that pipe are stored. 
 
The bandwidth available on the pipe is shared by the queues associated with 
that pipe (only one in case the packet is sent to a pipe) according to the 
WF2Q+ scheduling algorithm and the configured weights. 
 
Egress packets are stored in the appropriate queue, which is then placed into 
one of a few heaps managed by a scheduler to decide when the packet should 
be extracted. The scheduler is run once per iteration, and grabs queues from 
the head of the heaps when they are ready for processing. 
 
There are three data structures defining a pipe and associated queues: 
1. dn_pipe, which contains the main configuration parameters related to 

bandwidth 
2. dn_flow_set, which contains WF2Q+ configuration information 
3. dn_flow_queue, which is the per-flow queue (containing the packets) 
 
Multiple dn_flow_set can be linked to the same pipe, and multiple 
dn_flow_queue can be linked to the same dn_flow_set. All data structures are 
linked in a linear list which is used for housekeeping purposes. 
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Benchmark 
Description 
(continued) 

During configuration, the dn_flow_set and dn_pipe structures (a dn_pipe also 
contains a dn_flow_set) are created and initialized. 
 
At runtime, packets are sent to the appropriate dn_flow_set (either WFQ 
ones, or the one embedded in the dn_pipe for fixed-rate flows), which in turn 
dispatches them to the appropriate dn_flow_queue (created dynamically 
according to the masks). 
 
The transmit clock for fixed rate flows (ready_event()) selects the 
dn_flow_queue to be used to transmit the next packet. For WF2Q, 
wfq_ready_event() extracts a pipe which in turn selects the right flow using a 
number of heaps defined into the pipe itself. 
 
The current dataset sends packets directly to a pipe and utilizes fixed rate 
flows. 
 

Analysis of 
Computing 
Resources 

QoS is a memory intensive benchmark – large memory requirements test data 
cache misses, while long sequences of dependent loads test memory latency.  
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Networking Version 2.0 Benchmark Name: Route 
Lookup

 
Highlights 

 Benchmarks Potential Performance of Routers 
 

 
Application This benchmark is a distillation of the fundamental operation of IP datagram 

routers: receiving and forwarding IP datagrams. 
 

Benchmark 
Description 

All IP routers keep a table that allows it to lookup IP addresses and 
determine to which port an incoming IP datagram should be forwarded. This 
benchmark implements an IP lookup mechanism based on a Patricia Tree 
(or trie). The Patricia tree data structure is a type of binary, compact tree 
that allows fast and efficient searches with long or unbounded length 
strings. The number of search steps is bounded by the length of the search 
key e.g. 32-bit IPv4 addresses. 
 
The benchmark builds a tree from the IP address data supplied in route.txt 
(200 routes). After the tree is initialized, the benchmark calls the function 
pat_search() for each IP address in lookups.txt (2000 lookups). One pass 
through this data is regarded as a single interation.  
 

Analysis of 
Computing 
Resources 

The benchmark repeatedly walks through the trie. Consequently, a 
processor’s load-use latency and its ability to efficiently handle frequent CTI 
(control transfer instructions) operations are an important factor in this 
benchmark. 
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Networking Version 2.0 Benchmark Name: 
Transmission Control 

Protocol (TCP)
 

Highlights 
 Captures most frequently used and most 

processing-intensive portion of RFC793 
protocol 

 Simulates TCP traffic characteristics in 
real networks 

 
 

 De-couples processor speed from 
any randomness in TCP operation 

 Uses three different data sets to 
simulate a variety of workloads 

Application The ability of an embedded processor to handle Transmission Control 
Protocol (TCP) layer processing is an important consideration for avoiding 
bottlenecks in network equipment designs. Unlike ATM and some other 
network protocols that are mainly processed by network processors, ASICs, 
or specialized hardware blocks directly attached to general purpose 
processors, the TCP layer is often processed by the CPUs in general-
purpose processors. The interest of benchmarking TCP performance on 
embedded general-purpose processors has increased with the connection of 
more and more embedded devices to the network. The flexibility of TCP is 
such that it is used in wireline and wireless applications. 
 
The ISO reference model is commonly used when discussing protocol 
layering. This model depicts the TCP layer as sitting on top of the Internet 
Protocol (IP) layer and under the application layer. The function of IP is to 
provide a means of transferring TCP segments over inter-connected 
networks. IP has unique addressing information for each network element, 
and data communication is based on routing that provides best effort 
service to TCP and other transmission control layer protocols like UDP. 
 
In contrast to IP, TCP service is a reliable, connection-oriented byte stream 
service. It typically interfaces with an unreliable network layer protocol. 
Unlike other connection-oriented protocols that are based on a reliable 
network layer, TCP has to implement a more complex transmission control 
scheme to overcome these seemingly contradictory philosophies between 
protocol layers.  
 
The basic operation of TCP can be broken down into the following six areas: 

1. Basic data transfer 
2. Reliability  
3. Flow control 
4. Multiplexing 
5. Connections 
6. Precedence and security 
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Application The core of the TCP protocol is to transfer data between two connection 

endpoints. Like data processing in most of the network protocols, large 
data blocks are chopped into optimized sizes (as deemed by TCP) and 
encapsulated in a TCP segment. Communications in TCP involve both data 
and control operations. Comparing data processing with other protocols, 
the biggest difference with TCP is a mandatory checksum across the entire 
segment. This is because TCP provides reliable communication service on 
top of an unreliable IP layer. For the same reason, TCP requires fairly 
complex control and signaling to achieve reliability, efficiency, and 
connection management. Compared with IP, data operations are simpler 
but are more expensive in terms of performance. The cost associated with 
the data block size is linear in most of the cases. (For example, computing 
IP style checksum and memory copy.) The benchmark captures all the 
costly data manipulations while some of the complex but rarely used 
control logic can be omitted. 
 
 

Benchmark 
Description 

This benchmark implementation captures the most frequently used and 
processing-intensive portion of the protocol described in RFC793. The 
benchmark measures the data and buffer management performance, 
which is common and expensive in TCP implementations. Also, because 
this benchmark targets embedded general-purpose processors, the 
execution environment should match code size and memory scale. 
Typically, execution environments include a reasonably-sized memory and 
high-performance RTOS with shared kernel and user addressing spaces. 
The scope of this benchmark does not include measuring overall network 
performance. 
 
EEMBC’s TCP benchmark follows these general requirement guidelines: 
Accurate – the benchmark captures all major TCP operations in terms of 
processing cost 

Realistic – the benchmark simulates TCP traffic characteristics in real 
networks 

Deterministic – the benchmark de-couples processor speed from any 
randomness in TCP operation 

Simplistic – the benchmark implementation allows for a simplified TCP 
implementation with reasonable assumptions 
 
Application protocols that use bulk transfer contribute 90% of the traffic in 
terms of number of bytes but represent only about half the packets. The 
TCP benchmark is designed to be flexible enough to capture processor 
performance for both transfer types. 
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Benchmark performance metrics include: 

1. Complete event-driven TCP state machine, connection management 
signaling 

2. Transient behavior in short TCP conversations 
3. Buffer management – Data manipulation in both ingress and egress 

directions 
4. Queue management – Send queue, unacknowledged queues in 

egress direction  
5. Separate re-entrant client-server task with context switching 
6. Basic flow control 
7. Multiple data stream (phase II) 
8. Configurable packet size distribution for different traffic patterns 

 
RFC793 requirements that are not included in benchmark include: 

1. Real-time timer related – RTT estimation and update, RTO 
2. Exception handling, out-of-order delivery, duplicates and lost 

packets 
 
TCP behavior varies dramatically between different applications. Packet 
sizes, conversation length, and queue depth can all affect processing in 
different ways. To cope with different scenarios, the benchmark is 
configurable. In addition, the following four standard test cases were 
designed based on representative statistical data.  
 
 
Parameters/Tests 
The application data block processed between the client and server is 
constructed as a ring or circular buffer based on the segment size, and 
number of packets in the workload. 
 

1. Bulk data transfer test uses maximum TCP segment size (which is 
typically used in FTP data channel) 

2. Jumbo test uses MTU sizes, and numbers of packets applicable to a 
Gigabit Ethernet Backbone. 

3. Mixed packet sizes is an average case Standard Ethernet – mixture 
of activity 

Analysis of 
Computing 
Resources 

Each workload simulates network traffic using the following steps: 
1. Initiate server task. 
2. Insert network channel effect 
3. Initiate client task 
4. Insert network channel operations of client. 

 
This workload is repeated until all client connections are closed. 
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Networking Version 1.1 Benchmark Name: Packet 

Flow 
Highlights 

 Simulates a network router with 
three data sets to compare 
memory bus effects 

 Focuses on checksum calculations 
and logical compare operations 

 
Application The Packet Flow benchmark performs a subset (essentially the IP Header 

Validation) of the network layer forwarding function of the Internet protocol 
suite as specified in RFC1812, "Requirements for IP Version 4 Routers" which 
can be found at http://www.faqs.org/rfcs/rfc1812.html. The benchmark 
provides an indication of the potential performance of a microprocessor in an 
IP router system. 
 
A TCP/IP router normally examines the IP protocol header as part of the 
switching process. It generally removes the Link Layer header from a 
received message, modifies the IP header, and replaces the Link Layer 
header for retransmission. In this benchmark, the Link Layer header has 
already been removed and will not be replaced, i.e. all processing is done at 
Layer 3, on the assumption that lower level functions are handled by 
hardware or an interrupt service routine. 
 

Benchmark 
Description 

The benchmark simulates a router with four network interfaces. It initializes a 
buffer of programmable size (512KB, 1MB, and 2MB for reporting purposes) 
with IP datagrams. The header is always the minimum 20 bytes and is made 
up random characters except in the byte positions to be checked (IP version, 
checksum, and length). A checksum for the IP header is calculated and 
stored in each datagram. Errors are introduced in certain headers and an 
error count is logged. Datagrams are allowed to be aligned on the best 
natural boundary of the microprocessor and padding is added between them. 
 
As a benchmark, the IP packet size is chosen randomly to be either 46 bits 
(small packets) or 1500 bits (large packets) in size. Packet receipt is 
simulated by creating a dummy store queue of 512KB (approximately 660 
packets), 1MB (~1320 packets), or 2MB (~2640 packets) outside of the 
timing loop. One timed iteration of the benchmark consists of processing each 
packet header pointed to by the receive queue and moving the descriptor to 
a holding queue. Results are reported in iterations per second for each of the 
buffer sizes but can be equated to packets per second by the conversion of 
~660, ~1320, or ~2640 packet headers checked per iteration, respectively. 
 
Two descriptor queues are created with a pointer to the next descriptor and a 
pointer to the datagram header. One queue is called the receive queue 
(rx_queue in the code) and the other queue is the holding queue (hold_que 
in the code).  IP datagrams are often stored like this in actual systems using 
descriptors that are separate from the datagram. A descriptor has a next 
member that allows it to be put in a linked list and a pointer to a datagram. 
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As each datagram is processed by the benchmark algorithm it is removed 
from the receive queue and placed in the holding queue. Processing consists 
of: 
 

6. Checking that the packet length is large enough to hold the minimum 
length legal IP datagram (>=20 bytes). 

7. Checking that the IP checksum is correct (a bad packet counter is 
incremented if the checksum is not correct) 

8. Checking that the IP version number is 4 
9. Checking that the IP header length field is large enough to hold the 

minimum length legal IP datagram (20 bytes = 5 words) 
10. Checking that the IP total length field is large enough to hold the IP 

datagram header, whose length is specified in the IP header length 
field 

 
Cache route lookup, the routing decision, and test for local delivery, which 
would normally be a part of packet routing are not implemented in Version 
1.0 of this benchmark. Cache route lookup, however, is implemented in the 
EEMBC Route Lookup benchmark and those results can be combined with 
Packet Flow to get a better indication of microprocessor performance in an IP 
router system. 
 
A single iteration of the benchmark is complete when the receive queue of 
packet descriptors is empty. At the end of one iteration, the receive queue 
and the holding queue are switched allowing the next iteration to execute 
with a full receive queue. 
 

Analysis of 
Computing 
Resources 

The Packet Flow benchmark performs integer math on 16 bit unsigned 
quantities (the checksum calculation) and shift and logical compare 
operations (the IP version number and length checks). These operations and 
accessing the data from memory are primarily what is tested by this 
benchmark. Though the buffer sizes in memory are large, the checksum and 
verification process is only over the IP headers, which tend to take up 
residence in cache; therefore even at the largest buffer sizes, this benchmark 
has a high cache hit rate for microprocessors with 32KB of Data Cache. (The 
headers and packet descriptors for a 1MB buffer come very close to fitting in 
32KB of L1.)  The code size is trivial and easily fits in even a small L1 
Instruction Cache. 
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Networking Version 1.1 Benchmark Name: OSPF 
Highlights 

 Benchmarks Potential Performance 
of Routers 

 

 
Application The OSPF (Open Shortest Path First)/Dijkstra benchmark implements the 

Dijkstra shortest path first algorithm, which is widely used in routers and 
other networking equipment. 
 

Benchmark 
Description 

The Dijkstra algorithm finds the shortest, or least cost path, from a specific 
router (called the source) to all other routers that the source knows about. 
It builds a table of nodes where each node is a router. Each node has one or 
more “arcs” where each arc is a directed (one way) link to another node. 
These arcs represent links between routers. Each arc has a cost value that 
represents the 'value' of the link. The lower the cost number, the more 
desirable it is to use the link.  
 
The Dijkstra algorithm starts at a source (or root) node. It then computes 
the best-case cost, or shortest route of all the other nodes in the network in 
relation to the source node. 
 
There are two tables, arc_base and node_base. Each table is initialized 
before the benchmark starts and then reinitialized after each iteration of the 
benchmark, so that each iteration does exactly the same thing. 
 
Instead of building a predefined route, the standard method in this 
benchmark builds the routing tables dynamically. 
 

Analysis of 
Computing 
Resources 

The benchmark repeatedly walks the list that is used to hold the nodes. 
Consequently, a processor's load-use latency and its ability to handle 
frequent CTI (control transfer instructions) operations are an important 
factor in this benchmark.  
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Application This benchmark is a distillation of the fundamental operation of IP datagram 

routers: receiving and forwarding IP datagrams. 
 

Benchmark 
Description 

All IP routers keep a table that allows it to lookup IP addresses and 
determine to which port an incoming IP datagram should be forwarded. This 
benchmark implements an IP lookup mechanism based on a Patricia Tree 
(or trie). The Patricia tree data structure is a type of binary, compact tree 
that allows fast and efficient searches with long or unbounded length 
strings. The number of search steps is bounded by the length of the search 
key e.g. 32-bit IPv4 addresses. 
 
The benchmark builds a tree from the IP address data supplied in route.txt. 
After the tree is initialized, the benchmark calls the function pat_search() 
for each IP address in lookups.txt. One pass through this data is regarded 
as a single interation.  
 

Analysis of 
Computing 
Resources 

The benchmark repeatedly walks through the trie. Consequently, a 
processor's load-use latency and its ability to efficiently handle frequent CTI 
(control transfer instructions) operations are an important factor in this 
benchmark.  

 
 
 
 




