
 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

®

OABench™ Version 1.1 Benchmark Name: Image Rotation

Highlights
 Benchmarks Potential Performance of a

Printer Application.
 Uses a Bitmap Rotation Algorithm to Perform

a Clockwise, 90° Rotation on a Binary Image.

 Tests Bit Manipulation, Comparison and
Indirect Reference Capabilities.

 Largely Logical Compares/Branches and
Integer Addition/Subtraction

Application

The Image Rotation Benchmark is representative of color and monochrome printer applications
that must rotate an arbitrary binary image 90 degrees, for example, to switch between portrait and
landscape modes. This benchmark uses a bitmap rotation algorithm to perform a clockwise, 90-
degree rotation on a binary image. Rotated images are assumed to be a complete image (i.e. not
rotating a bitmap within a larger image), with rows padded out to byte boundaries.

Benchmark
Description

The bitmap rotation algorithm is primarily aimed at testing the bit manipulation, comparison and
indirect reference capabilities of the microprocessor. The algorithm uses a series of indirect
references and bit masks to check and set individual bits in a data buffer representing a binary
image. The implementation supports 8-, 16- and 32-bit data as well as little and big Endian
memory architectures. Two buffers are used, one for input and one for output, rather than trying
to rotate the image in place.

There are multiple input data buffers available to debug the benchmark, but the "Medium" image
must be used in the certified benchmark. This image is 295 wide and 345 bits high, or about 12K.
The input buffer is included in the benchmark as statically initialized data and the output buffer is
created by calling the test harness memory allocation routine, th_malloc(). After the timed
iterations have been completed, the test is run one additional time so that the results can be
checked by calculating a CRC check of the output buffer.

The C library routine memset() is called at the beginning of each iteration to set the output buffer
to zeroes.

Analysis of
Computing
Resources

The benchmark effectively stresses the bit manipulation capabilities of the target CPU.

This benchmark uses an instruction mix of Compare/Branch instructions (45%), integer
Add/Subtract instructions (25%) and Loads/Stores (12%). The percentages are approximate and
may vary across architectures. The C library function memset() is called once per iteration to
initialize the 12K output buffer to zeroes. No floating-point calculations are used. The code size
is small and the data size is moderate.

Special Notes: The Image Rotation Benchmark is part of the EEMBC OAmark™ score.

