
 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

®

ConsumerBench™ Version 1.1 Benchmark Name:
High Pass Grey-Scale Filter

Highlights

 Benchmarks performance for digital image
processing used in digital still camera and
other digital image products

 Explores 2-D data array access and multiply /
accumulate capability.

 This benchmark has potential for Full-Fury
benchmark optimization, especially by SIMD
and VLIW architectures.

Application A high pass grey-scale filter is used in the front end processing of DSCs (Digital Still Camera).

RGB data from either CCD or CMOS sensors is pre-processed by this filter to deliver image
enhancement, and then passed to the JPEG image compression processing. This filter takes a
“blurry” image and sharpens it with a 2-dimensional spatial filter.
DSCs implement this filter either in software or hardware, with software giving the flexibility to
add customization for picture quality. The number of filter taps can vary from 3(H) x 3(V) to
more than 5(H) x 5(V),.
This benchmark is one of the most frequently used algorithms in image processing and represents
a good measure of the CPU performance in digital imaging products.

Benchmark
Description

This benchmark explores the target CPU’s capability to perform two dimensional data array
access and multiply/accumulate calculation.
For each pixel in the image, the filter calculates the output result from the 9 pixels (including the
center pixel) multiplied by filter coefficients, accumulated and then shifted left by 8-bits. The 2-
dimensional coefficients used here are:

F11
 F12
 F13

F21
 F22
 F23

F31
 F32
 F33

-28
 -28
 -28

-28
 255
 -28

-28
 -28
 -28

=

Each pixel is computed according to the following equation:.

Here, P(i) is the pixel intensity, c is the center location of the filter window, w is the width of the
input image. The data type of P(i) is Byte, and the two dimensional data is arranged in a linear
way. Therefore addition or subtraction of the horizontal image width “w” and offset of “-1” or
“+1” are required to retrieve the 2-dimension window data. The accumulation is performed as a
16-bit data and the final output data is converted to a Byte data after a shift right by 8-bits. The
top/left and right/left borders are black out by assigning “BLACK” value of 0.

The input data size is 320-pixels in the horizontal direction and 240-pixels in the vertical
direction. This is a monochrome or gray-scale calculation. It is not an RGB calculation where the
same process is performed three times. Usually the enhancement is performed just in the

F11*P(c-w-1)
+F12*P(c-1)
+F13*P(c+w-1)

+F21*P(c-w)
+F22*P(c)
+F23*P(c+w)

+F31*P(c-w+1)
+F32*P(c+1)
+F33*P(c+w+1))

PelValue = (Short)(

Out = (Byte)(PelValue >>8);

 An Industry Standard Benchmark Consortium

EEMBC Benchmark Datasheet – 2 February 2006 www.eembc.org

®

luminance signal Y, which is the gray-scale signal.
If the benchmark score is extrapolated for a larger image, the processing time will be almost
linearly proportional to the pixel count. (e.g. For a 640 x 480 image, it will be x4 times.) The
iteration/sec score will be the inverse e.g. for a 640 x 480 image, iteration/sec it will be x1/4.

Analysis of
Computing
Resources

Out of the Box Benchmark: A ‘for loop’ calculates the filter output one pixel at a time. For one
pixel calculation, the center pixel itself and the eight neighbor pixel data should be loaded. This is
a time consuming process, considering the offset/width index calculation, and the time spent for
the memory or cache access,.
Higher performance would be expected from a microprocessor with a single-cycle MAC unit. ..

Full-Fury Benchmark: Because of the simple structure of the multiplication and accumulation, a
VLIW or SIMD architecture with multiple MAC units are able to offer a simple acceleration.
Another possible optimization is loading multiple Bytes at a time, although a SIMD architecture
may show some overhead for the rearranging the data to feed the SIMD engine.

Regarding the memory architecture, the image data is repeatedly used for the consecutive window
and can benefit from a Data Cache. The code size is trivial and will easily fit in to a small L1
Instruction Cache.

