
w w w . e e m b c . o r g

software
benchmark
data book

DENBench™1.0

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 1

Table of Contents

AES ..2

DES ...4

Calculating the DENmark™ and other DENBench™
Consolidated Scores ...6

High-Pass Grey-Scale Filter ...9

Huffman Decoding ..14

MP3 Decode ..15

MPEG-2 Decode ...18

MPEG-2 Encode ...22

MPEG-4 Decode ...28

MPEG-4 Encode ...34

RGB to CMYK Conversion ..41

RGB to YIQ Conversion ...46

RSA ...51

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 2

DENBench™ Version 1.0 Benchmark Name: AES

Highlights
 Benchmarks the Rijndael Algorithm of

the Advanced Encryption Standard
(AES) algorithm, named for creators
Joan Daemen and Vincent Rijmen

 Roundtrip implementation plus
integration of the FIPS test assures
accuracy

 A component of the EEMBC
Cryptography sub-suite

 AES tends to replace DES and Triple-
DES as the preferred encryption
algorithm for maximum-security
applications in governmental, HDTV,
satellite, and vital data-security
applications

Application
and
Restrictions

The Advanced Encryption Stand (AES) benchmark provides an indication of
the potential performance of a microprocessor or Digital Signal Processor
(DSP) subsystem doing AES cryptographic encryptions and decryptions. The
AES cipher is used in numerous cryptographic protocols, including Transport
Layer Security (TLS), Secure Socket Layer, (SSL), Secure Shell, (SSH), and
Internet Protocol Security (IPSEC). AES is a royalty-free Federal Information
Processing Standards (FIPS) approved standard intended to ultimately
replace Digital Encryption Standard (DES). The EEMBC benchmark and its
source code are subject to the following restrictions:

Joan Daemen and Vincent Rijmen, the developers of the Rijndael
algorithm, submitted this software package to the National
Institute of Standards and Technology (NIST) during the
Advanced Encryption Standard (AES) development effort. This
software is distributed in compliance with export regulations (see
below), and it is intended for non-commercial use only. NIST does
not support this software and does not provide any guarantees or
warranties as to its performance, fitness for any particular
application, or validation under the Cryptographic Module
Validation Program (CMVP) http://csrc.nist.gov/cryptval. NIST
does not accept any liability associated with its use or misuse.
This software is provided as-is. By accepting this software the
user agrees to the terms stated herein.

The EEMBC AES Benchmark Software is subject to the following Export
Restrictions (exportation from the United States of America to non-USA
countries): Implementations of cryptography are subject to United States
Federal Government export controls. Export controls on commercial
encryption products are administered by the Bureau of Export Administration
(BXA) http://www.bxa.doc.gov/Encryption/ in the U.S. Department of
Commerce. Regulations governing exports of encryption are found in the
Export Administration Regulations (EAR), 15 C.F.R. Parts 730-774.
Compliance with export restrictions is the responsibility of each individual
EEMBC member, not EEMBC, Inc. itself.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 3

Benchmark
Description

Rijndael is an iterated block cipher with a variable block length and a
variable key length. The block length and the key length can be
independently specified to 128, 192, or 256 bits. The EEMBC AES benchmark
implements all three of these key lengths for each iteration. Like most
cryptographic functions, there is an array (or “block”) that is subjected to
multiple transformations. This benchmark performs 1000 Monte Carlo Tests
(MCT) for 16 passes, and does a complete round-trip encryption, followed by
decryption, to verify correctness. Implementing the FIPS tests inside the
code itself further enhances correctness. The code faithfully implements the
Wide Trail Strategy to deflect against layer attacks, and implements all three
layers: linear-mixing, non-linear layer, and key addition layer.

Unlike the other EEMBC cryptography benchmarks (which were created
based on the SSLEAY 0.9 project), the EEMBC AES benchmark was created
from the baseline source code and specification by Vincent Rijmen and Joan
Daemon found at http://csrc.nist.gov/CryptoToolkit/aes/. It supports the
FIPS test found at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

The data that is supplied is proprietary to EEMBC. In addition, EEMBC has its
own, secret data that is used to double-check accuracy of implementation.

Analysis of
Computing
Resources

The benchmark is computationally challenging: addition, multiplication,
extensive use of division, bit shifting, matrix math, bitwise operators such as
XOR, and other operators are used. It is implemented in integer math. This
benchmark is almost exclusively CPU bound, and the quality of the math
library as well as memory library has an effect on performance. Memory
moves are performed repeatedly, so optimized C library mem* functions
would improve performance, but without overwhelming the basic math
computations. Sophisticated superscalar architectures scheduled by
sophisticated compilers (or assembly language implementations) can take
advantage of some parallelism.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 4

DENBench™ Version 1.0 Benchmark Name: DES

Highlights

 Benchmarks the Digital Encryption
Standard (DES) algorithm

 Created in part from SSLEAY
sources, the open source Netscape
Secure Socket Layer source code
base

 Roundtrip implementation and
self-checking assures accuracy

 A component of the EEMBC
Cryptography Sub-suite

 DES is a popular cryptographic
algorithm (especially in Triple-DES
configuration) used widely in
eCommerce applications, including
mobile phones m-commerce

History,
Applications
and
Restrictions

The Digital Encryption Standard (DES) benchmark is a cipher algorithm that
provides an indication of the potential performance of a microprocessor or
digital signal processor (DSP) subsystem doing DES cryptographic
encryptions and decryptions. The DES cipher is used in numerous
cryptographic protocols, including transport layer security (TLS), secure
socket layer, (SSL), secure shell (SSH), and Internet protocol security
(IPSEC). A history of the cipher’s development is available at
http://en.wikipedia.org/wiki/DES.

Although it is vulnerable to certain, extremely computationally intensive
cracking attacks (on the order of a successful crack in 24 hours), DES
remains popular in many eCommerce (internet) and m-commerce (mobile)
applications but has been replaced for the most secure applications by the
Advanced Encryption Standard (AES), which is also part of the EEMBC
benchmark suite.

This benchmark, and the source code, is subject to the following restrictions:

This software is subject to export restrictions from the United States of
America to non-USA countries. Export and re-export controls on commercial
encryption products are administered by the Bureau of Industry and Security
(BIS) of the U.S. Department of Commerce. Rules governing exports and re-
exports of encryption items are found in the Export Administration
Regulations (EAR), 15 C.F.R. Parts 730-774. Sections 740.13, 740.17 and
742.15 of the EAR are the principal references for the export and re-export of
encryption items. Further information is available from
http://www.bis.doc.gov/Encryption.

Benchmark
Description

DES is an iterated block cipher with a fixed block length of 64 bits and a fixed
key length of 64 bits. However, only the first 56 bits are used; the other 8
bits are for parity checking (hence DES is considered 56-bit encryption).
EEMBC implements the correct key length. Like most cryptographic functions,
there is an array (or “block”) that is subjected to multiple transformations (in

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 5

the case of DES, 16). Unlike the AES benchmark implementation [correct?],
EEMBC does not implement the FIPS tests on DES. Checking is by cyclical
redundancy checksum (CRC).

Analysis of
Computing
Resources

The benchmark is computationally challenging: addition, multiplication,
extensive use of division, bit shifting, matrix math, bitwise operators such as
XOR, and other operators are used. It is implemented in integer math. This
benchmark is almost exclusively CPU bound, and the quality of the math
library as well as memory library has an effect on performance. Memory
moves are repeatedly performed, so optimized C library mem* functions
would improve performance without overwhelming the basic math
computations. Superscalar and VLIW architectures scheduled by sophisticated
compilers (or assembly language implementations) can take advantage of
some parallelism. Many of the computationally challenging functions can be
offloaded to hardware acceleration logic.

The input data for the DES benchmark is proprietary to EEMBC
but [what characteristics?].

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 6

DENBench™ Version 1.0 Benchmark Name:

Calculating the DENmark™
and other DENBench™
Consolidated Scores

 The DENmark,™ MPEG Decodemark™, MPEG Encodemark™, Cryptomark™,
and Imagemark™ are single-number scores that EEMBC provides, in addition
to scores based on individual benchmark applications within its DENbench
suite, to enhance the presentation of comparative data on processor
performance. These numbers are intended to provide a first-order
representation of processor performance in tasks related to digital
entertainment applications. The detailed scores on individual benchmarks and
datasets will continue to offer the highest value to system designers, allowing
comparison of the individual applications that are specific to their designs.

DENmark™ An overall "DENmark" score provides a single-number performance rating for
the DENbench suite. A member must run all tests in this suite, except for the
MPEG-2 Encode (Floating-Point) benchmark with its five datasets, in order to
derive a DENmark score.

MPEG
Decodemark™

The MPEG Decodemark consolidated scores provide a snapshot of
performance in specific test groups:

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 7

MPEG
Encodemark™

The MPEG Encodemark consolidated scores provide a snapshot of
performance in specific test groups:

Cryptomark™ The Cryptomark consolidated scores provide a snapshot of performance in

specific test groups:

 Members are not required to publish all scores in the DENbench suite. In
other words, they can choose to run only the benchmark applications that
make sense for their processors.

The method used in calculating each of the “mark” scores is shown in the
following table. The geometric mean of each ‘mark’ is multiplied by a
normalizing factor intended to keep most of the ‘marks’ within the same
order of magnitude.

Consolidated
score name Apply geometric mean to:

The nth
root used

to
calculate
geometric

mean

Multiply
geometric

mean result
by this

normalizing
factor:

MPEG
Decodemark

the 5 scores from each of
MPEG-2 Decode benchmark,
MPEG-4 Decode benchmark,
MP3 player benchmark

15 1000

MPEG
Encodemark

the 5 scores from each of
MPEG-2 Encode benchmark
and MPEG-4 Encode
benchmark

10 1000

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 8

Consolidated
score name Apply geometric mean to:

The nth
root used

to
calculate
geometric

mean

Multiply
geometric

mean result
by this

normalizing
factor:

Cryptomark each of the scores from AES,
DES, RSA, and Huffman
Decode benchmarks

4 10

Imagemark the 7 scores from each of
RGB/YIQ, RGB/HPG,
RGB/CMYK, JPEG
Compression, and JPEG
Decompression

35 10

DENmark each of the 64 individual
scores/datasets from the
DENbench suite

64 10

The DENbench suite also includes an MPEG-2 Encode (Floating-Point)
benchmark with five datasets. The consolidated score is calculated by taking
the geometric mean of the five scores generated and multiplying the result
by 100. The result does not contribute to the overall DENmark score and no
distinct “mark” score is calculated.

Note on the use of geometric mean versus arithmetic mean

The geometric mean is used in calculating the consolidated, single-number
scores to assure equal weighting for all benchmarks in each category. An
arithmetic mean of raw data is not statistically valid because of the extremely
wide variation of the results. Individual results that yield a very small number
of iterations would have virtually no effect on an arithmetic mean when
combined with raw results that yield a very high number of iterations. In
effect, an arithmetic mean of results would impose an arbitrary weighting
system that heavily favors the tests with the most iterations per second.

Cryptomark, DENbench, DENmark,. Imagemark, MPEG Decodemark and MPEG Encodemark are
trademarks and EEMBC is a registered trademark of the Embedded Microprocessor Benchmark
Consortium.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 9

DENBench™ Version 1.0 Benchmark Name: High-Pass
Grey-Scale Filter

Highlights
 Benchmarks performance for image

processing used in digital still camera
and other digital imaging products

 Explores 2-D data array access and
multiply/accumulate capability

 Integer implementation

 Seven datasets provide a larger
workload compared to the single
dataset of ConsumerBench Version 1.1

 Inputs are black and white Portable
Graymap (.pgm) files

 Implements Non-Intrusive Cyclical
Redundancy Checksum (CRC) to Check
Output Quality

Application A high pass gray-scale filter is used in the front end
processing of digital still cameras (DSCs). RGB data from
either CCD or CMOS sensors is pre-processed by this
filter to deliver image enhancement, and then passed to
the JPEG image compression processing. This filter takes
a blurry image and sharpens it with a 2-dimensional
spatial filter. DSCs implement this filter either in
software or hardware, with software giving the flexibility
to add customization for picture quality. The number of
filter taps can vary from 3(H) x 3(V) to more than 5(H) x
5(V). This benchmark is one of the most frequently used
algorithms in image processing and represents a good
measure of the CPU performance in digital imaging
products.

Benchmark Description This benchmark explores the target CPU’s capability to
perform two-dimensional data array access and
multiply/accumulate calculations. For each pixel in the
image, the filter calculates the output result from the 9
pixels (including the center pixel) multiplied by filter
coefficients, accumulated and then shifted left by 8 bits.

The two-dimensional coefficients used here are:

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 10

Each pixel is computed according to the following
equation:

Here, P(i) is the pixel intensity, c is the center location of
the filter window, w is the width of the input image. The
data type of P(i) is byte, and the two-dimensional data is
arranged in a linear way. Therefore addition or
subtraction of the horizontal image width w and offset of
-1 or +1 are required to retrieve the two-dimensional
window data. The accumulation is performed as 16-bit
data and the final output data is converted to byte data
after a shift right by 8 bits. The top/left and right/left
borders are blacked out by assigning BLACK a value of 0.

The input data sizes vary and use monochrome .pgm
files, performing monochrome or gray-scale calculation.
It is not an RGB calculation where the same process is
performed three times. Usually the enhancement is
performed just in the luminance signal Y, which is the
gray-scale signal. If the benchmark score is extrapolated
for a larger image, the processing time will be almost
linearly proportional to the pixel count (e.g. for a 640 x
480 image, it will be multiplied by 4). The iteration/sec
score will be the inverse (e.g. for a 640 x 480 image,
iterations/seconds will be multiplied by .25).

Description of Datasets

Rose Small

The dimensions are 227x149, 256 colors, 146 colors
used in pgm format.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 11

Goose

The dimensions are 320x240, 256 colors. The image has
254 unique colors in .pgm format.

Mars Former Lakes

Mars Former Lakes is a NASA graphics picture. The
dimensions are 800x482, 16 million colors. The image
has 255 unique colors in .pgm mode.

Dragon Fly

Dragon Fly is an image containing highlights and a wide
range of contrast. The dimensions are 606x896, 16
million colors. The image has 162,331 unique colors in
.pgm format.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 12

EEMBC Group Shot

EEMBC Group Shot is a snapshot of attendees at an
EEMBC Board of Directors meeting in 2003. The
dimensions are 640x480, 16 million colors. The image
has 253 colors in this .pgm file.

David and Dogs

David and Dogs is a snapshot of David Weiss and his
dogs Sandy, Toga, and Trudy during a rare snowstorm in
Austin. It is used as a grayscale image, with good
contrast details in the melting snow. The dimensions are
564x230, 256 shades of gray. The image has 215 unique
colors.

Mandrake

Mandrake is a close up picture of a Mandrill Baboon
(sometimes misnamed as "Mandrake"). It has a lot of
detail and colors. It has been the default image for the
filter benchmarks in both color and gray scale. The
dimensions are 320x240, 16 million colors. The image
has 213 unique colors in this .pgm version.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 13

Galileo

Galileo is a NASA composite image based on actual
images of the Jupiter and several of its moons. The
dimensions are 290x415, 16 million colors. The image
has 36,557 unique colors, and also contains “real black”
for over 30% of the picture, which is interesting from an
optimization perspective. This .pgm file has 256 colors.

 Output quality is measured using Non Intrusive CRC
code developed by the EEMBC Certification Laboratory
(ECL, LLC). It does not affect the benchmark score.

Analysis of Computing
Resources

Out of the Box Benchmark: A “for loop” calculates the
filter output one pixel at a time. For one pixel calculation,
the center pixel itself and the eight neighbor pixel data
should be loaded. This is a time consuming process,
considering the offset/width index calculation, and the
time spent for the memory or cache access. Higher
performance would be expected from a microprocessor
with a single-cycle MAC unit.

Full-Fury Benchmark: Because of the simple structure
of the multiplication and accumulation, a VLIW or SIMD
architecture with multiple MAC units is able to offer a
simple acceleration. Another possible optimization is
loading multiple bytes at a time, although a SIMD
architecture may show some overhead for the
rearranging the data to feed the SIMD engine. Regarding
the memory architecture, the image data is repeatedly
used for the consecutive window and can benefit from a
data cache. The code size is trivial and will easily fit in to
a small L1 instruction cache.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 14

DENBench™ Version 1.0 Benchmark Name: Huffman
Decoding

Highlights
 Benchmarks potential performance of a

processor in a digital camera and is
modeled on picture data (YUV data)

 Huffman Decoding is a key algorithm in
JPEG, MPEG, and compression schemes

 Integer implementation
 Stresses table lookup, bit

manipulation, shifting
 Implements CRC to Check Output

Quality

Application Huffman decoding is a key algorithm in JPEG, MPEG, and other compression
schemes used in digital cameras. Details on Huffman coding and decoding
are available here: http://en.wikipedia.org/wiki/Huffman_coding

Benchmark
Description

The Huffman Decoding benchmark initializes the AC and DC chrominance
and luminance tables (4 tables), fills the various buffers, and then performs
the Huffman decoding function using a fairly standard Huffman
implementation.

Analysis of
Computing
Resources

This benchmark concentrates mostly on lookup, bit manipulation, and
shifting rather than file I/O. Memory-to-memory operations are important
for performance, as intermediate values are constantly being stored.

Optimizations
Allowed

Out of the Box / Standard C
Full Fury / Optimized

 The C code must not be changed for Out of the Box unless it must be

modified to get it to compile. All changes must be documented and must
not have a performance impact.

 For Out of the Box, additional hardware can be used if it does not require
code changes.

 All optimized libraries must be part of the standard compiler package,
and/or available to all customers

 The EEMBC Test Harness Regular or Test Harness Lite may be used. Test
harness changes may be made for portability reasons if they do not
impact performance

 For Optimized, the basic algorithm may be changed and/or the code can
be rewritten in assembler. We report PSNR scores to help you judge
quality of computational processing.

 For Optimized, optimized libraries can be used if they are publicly
available.

 For Optimized, hardware-assist can be used if it is on the same processor
as that being benchmarked.

 For Optimized, in-lining is allowed.
 Additional data files may be used by ECL during certification to ensure the

correctness of the optimized benchmark. You should not assume data
patterns during optimization.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 15

DENBench™ Version 1.0 Benchmark Name: MP3
Decode

Highlights

 Benchmarks potential performance
of an MP3 player’s processor
subsystem

 Uses five different test files

 Integer implementation derived
from the MSSG ISO sources

 Implements PSNR to check the
output quality

Application The MP3 Decoder benchmark provides an indication of the potential

performance of a microprocessor subsystem running an MP3 player
application.

Benchmark
Description

The benchmark is an integer implementation of the ISO 13818-3 MPEG-2
Layer 3 decoder with lower sampling frequency extension. Normal sampling
frequencies are 32 kHz, 44.1 kHz (typical CD-ROM audio), or 48 KHz. Lower
sampling frequencies are 16 KHz, 22.05 KHz, or 24 KHz. We selected a lower
sampling to reflect that which is often used in PDAs, mobile phones, and on
websites where bandwidth is a concern. The benchmark does not include the
standard MPEG optimizations, i.e. neither the 0.9.3 nor the 0.9.5
optimizations are implemented because we selected pure "reference code" as
the baseline for this benchmark.
The benchmark includes both Huffman decoding and modified inverse
discrete cosine transform (iDCT) routines.
The benchmark simulates the decoding and playback by encapsulating data
statically (rather than through file I/O) of the following MP3 encoded files:

 JUPITER.mp3: A faithful rendition of “Jupiter, the Bringer of Jollity” from
Gustav Holst's The Planets. Encoded at 160 KBps, stereo. Dynamics
suggest a full range of signals.

 music128stereo.mp3: A sophisticated set of music and noise samples
spanning the full dynamic range. This one is encoded at 128 KBps
(constant), stereo, at very high quality, and consists of one minute's
worth of playback. This file is about 993KB on disk (based on Windows
XP NTFS filesystem). 128 KBps is considered the best MP3 rate for
quality in portable players.

 music48_128stereo.mp3: Same set of music as above, but encoded in
stereo with a variable bit rate of between 48 KBps and 128 KBps. Very
high quality. 855 KB on disk suggests that most of it was encoded at high
bit rates by our encoder at the EEMBC Certification Laboratory (ECL), but
some at lower bit rates. 48 KBps is often the maximum bit rate used for
cellular/mobile phone.

 music64stereo.mp3: Same set of music as above, but encoded at 64
KBps, an ideal compromise on quality vs. size. Constant rate, stereo.
470 KB on disk.

 music48mono.mp3: Same set of music as above, but encoded in
monaural (mono), not stereo, at 48 KBps constant. 353 KB on disk.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 16

Processing consists of:
1. Reading the selected MP3 file.
2. Reading and interpreting the header information.
3. Read and decode frames of data.
4. Process the data based on the header information.
5. Output music as two channels of 16-bit pulse code modulated data. This

data is placed into an AIFF format file which is supported by a wide
range of players.

6. A PSNR value is calculated for each PCM frame against a reference AIFF
file. These frame scores are aggregated into a single PSNR score for the
benchmark.

A single iteration of the benchmark is complete when the end of the input file
is reached and no more data is available to be processed.

A way to measure the quality of the output based on peak signal-to-noise
ratio (PSNR) code was developed by ECL and implemented in accordance
with the Consumer Subcommittee, Technical Advisory Board (TechTAG), and
EEMBC Board of Directors. PSNR is a decibel measurement of noise power.
PSNR is consistent for the industry and widely used to measure picture
quality and audio quality. PSNR is measured outside the benchmark timing
loop, on the host side processor (not the embedded target).

The flow diagram is as follows:

Start

End

Bit
stream Open

 bit stream
Header

Parameters

Synchronize

CRC

End of
 stream

Get side info

Read frame bits
to global buffer

Scale
factors

P
E
R

F
R
A
M
E

Huffman
Decoding

Dequantize
 samples

stereoReorder
 buffer

Anti-
alias

Hybrid +
 polyphase
synthesis

Out FIFO

PCM
audio

X stereo

X Max_gr

X stereo

YES
NO

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 17

Analysis of
Computing
Resources

This is an integer-only implementation of MPEG-1/2 Layer 3 audio and is a
benchmark that concentrates mostly on computational processing rather than
file I/O. In the following order, synchronization and error checking, Huffman
decoding, re-quantization (using inverse discrete cosine transform, iDCT),
and reordering are performed.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 18

DENBench™ Version 1.0 MPEG-2 Decode

Highlights

 Benchmarks potential performance
of an MPEG-2 Decoder

 Five different test files stress
different decoder aspects

▪ Integer implementation
▪ Implements PSNR to check output

quality
 Based on the ISO reference source

Application The MPEG-2 Decoder benchmark provides an indication
of the potential performance of a microprocessor
subsystem running an MPEG-2 Decoder application, such
as those found in a DVD player or a digital set-top box.

Benchmark Description The benchmark contains a fixed point (integer)
implementation of the MSSG ISO sources. The MPEG-2
Decoder uses a standard reference implementation of
the core algorithm, including Huffman decoding and
modified Inverse Discrete Cosine Transform (iDCT)
routines.

The fixed-point implementation base algorithms of
fdctint.c and jfdctint.c are based on C. Loeffler, A.
Ligtenberg and G. Moschytz, “Practical Fast 1-D DCT
Algorithms with 11 Multiplications,” Proc. Int’l. Conf. on
Acoustics, Speech, and Signal Processing 1989 (ICASSP
'89), pp. 988-991.

The libjpeg jfdctfst.c algorithm is based on Arai,
Agui, and Nakajima’s algorithm for scaled DCT. Their
original paper (Trans. IEICE E-71(11):1095) is in
Japanese, but the algorithm is described in the
Pennebaker and Mitchell’s JPEG Still Image Data
Compression Standard textbook.

The benchmark’s input data is a series of .MPEG files,
and the output is a series of .PPM files, which can be
viewed using any suitable graphic file viewer.
Correctness is checked by Cyclical Redundancy
Checksum (CRC checking); quality is measured using
Peak Signal to Noise Ratio analysis (PSNR). CRC is used
as a checkpoint only, not as a canonical validation. Out-
of-the-box certifications, most of the time and for most
compilers, will have the same CRC values.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 19

The datasets are a superset of the MPEG-2 Encode
datasets in terms of the number of frames processed.

Description of Datasets

Graphic

Graphic is a black background ray-traced sequence with
reflections, combined with moving light sources with
coronas.

The primary elements are the reflections, a secondary
halo from the first light source, and a few small artifacts
on the front-most graphic.

It is derived from an MPEG transport stream of
encapsulated video.

The MPEG 2 parameter file is set to NTSC source
parameters.

SEQUENCE MPEG2 MP@ML 720x480 chroma 360x240
fps 30

maxBps 1000000 vbv 229376

Picture 720x480 display 720x480 pixel 8x9

A sequence of 50 frames is used for encoding. This
results in a 3 second run, and keeps the RAM file
requirements under 4 megabytes. The resulting MPEG
file size is 232,677 bytes.

Railgrind

Railgrind is a sequence of a skateboarder doing a grind
move down a handrail and landing in an open space. The
camera is centered on the skateboarder, which results in
a fast moving color background.

The artifacts to watch for are tearing of the lower
background at the bottom part of the rail move.

The original file is an MPEG system stream with video on
channel 0.

SEQUENCE MPEG2 MP@ML PROG 320x240 chroma
160x120

fps 25 maxBps 100000 vbv 65536

Picture 320x240 display 320x240 pixel 1x1

A sequence of 30 frames is used for railgrind decoding.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 20

Sign

“Sign” shows a person using sign language. There is a
zoom-in effect to the speaker, with a complex color
background of people.

It is derived from an MPEG system stream with video on
channel 1.

Artifacts may appear as small color blocks appearing in
the bottom lines of the picture.

The original input dimensions are 352x256, however the
decoder only correctly decodes this with image size at
352x240

SEQUENCE MPEG2 MP@ML PROG 352x240 chroma
176x120 fps 25

maxBps 95000 vbv 32768

Picture 352x240 display 352x240 pixel 1x1

300 frames of sign are decoded.

Zoom

Zoom is a beach scene with a rapid zoom-out effect. The
original input was an AVI file, extracted to bitmaps.
These bitmaps were converted to PPM files, and re-
decoded at 30 fps. The final YUV files were generated
from the decoded file.

SEQUENCE MPEG2 MP@ML PROG 320x240 chroma
160x120

fps 30 maxBps 95000 vbv 65536

Picture 320x240 display 320x240 pixel 1x1

65 frames are used for decoding.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 21

Marsface

Marsface is a rotating black and white radar picture of a
Mars feature. The feature is 3 dimensional with a
perspective view. The original is a 24-fps MPEG file. This
file format is maintained for the decoder. For encoding,
the bitrate is increased as well as the fps. An fps of 25 is
the closest available setting in the decoder.

Original Attributes:

SEQUENCE PROG 192x192 chroma 96x96 fps 24

maxBps 0 vbv 32768

picture 192x192 display 192x192 pixel 1x1

Generated attributes:

SEQUENCE MPEG2 MP@ML PROG 192x192 chroma
96x96

fps 25 maxBps 95000 vbv 65536

picture 192x192 display 192x192 pixel 1x1

All 49 frames are used for decoding.

Benchmark Processing

Processing consists of:
7. Read the MPEG-2 file
8. Read and interpret the header information
9. Read and decode frames of data
10. Process the data based on the header information
11. Output the .PPM file into memory
12. Calculate a PSNR value

A single iteration of the benchmark is complete when the
end of the input file is reached and no more data is
available to be processed.

Output quality is measured using Peak Signal to Noise
Ratio (PSNR) code developed by EEMBC. PSNR is a
decibel measurement of noise power and is consistent
for the industry, and widely used to measure picture and
audio quality. PSNR is measured outside the benchmark
timing loop.

Analysis of Computing
Resources

This benchmark concentrates mostly on computational
processing rather than file I/O, with the key algorithms
being the inverse discrete cosine transform.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 22

DENBench™ Version 1.0 Benchmark Name:

MPEG-2 Encode

Highlights
 Five different test files to stress

different aspect of encoders
 Floating point and integer

implementations
 Implements PSNR to check output

quality

Application The MPEG-2 Encode benchmark provides an indication of the potential
performance of a microprocessor running an MPEG-2 encoder application.

Benchmark
Description

The benchmark contains two different variations: an optional single-precision
floating-point algorithm and a fixed-point version derived from ISO sources.
MPEG-2 Encode uses a fairly standard reference implementation of the core
algorithm, including Huffman decoding and modified inverse discrete cosine
transform (iDCT) routines.

The fixed-point implementation base algorithm of fdctint.c and jfdctint.c
is based on Loeffler et al (1989) [1].

For testing purposes, the benchmark was built and tested under Microsoft
Windows using gcc and Visual C, Diab Data for PowerPC, gcc under Solaris
(64-bit), Green Hills Software for ARM, and other compilers.

The input is a series of five datasets, which take the form of .PPM files along
with YUV. The output is an MPEG file (.MPEG) file which can be played using
Windows Media Player or Apple Quicktime to help verify that the encoding
was correct (assuming you use the uuencode option in the Test Harness).
Correctness is also checked by cyclical redundancy checksum (CRC checking),
and we measure quality using peak signal-to-noise ratio analysis. CRC is used
as a checkpoint only, not as a canonical validation. Out-of-the-box
certifications, most of the time, for most compilers, will have the same CRC
values.

The Datasets Dataset #1: “Graphic”

Description

“Graphic” is a black-background ray-traced sequence with reflections and
moving light sources with coronas. The primary elements are the reflections,
a secondary halo from the first light source, and a few small artifacts on the
front-most graphic. It is derived from an MPEG transport stream of
encapsulated video.

The MPEG 2 parameter file is set to the following NTSC source parameters:

SEQUENCE MPEG2 MP@ML 720x480 chroma 360x240 fps 30

maxBps 1000000 vbv 229376

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 23

Picture 720x480 display 720x480 pixel 8x9

The Encoding Process

A sequence of seven frames is used for encoding. This results in a three-
second run and keeps the ram file requirements under 4 Mbytes.

The resulting MPEG file size is 232,677 bytes. On a 1.6-GHz reference
platform, one iteration of the encoding process takes 3.57 seconds total run
time.

 Dataset #2: “Railgrind”

Description

“Railgrind” shows a skateboarder performing a grind move down a handrail
and landing in an open space. The camera is centered on the skateboarder,
which results in a fast moving color background.

The artifacts to watch for are tearing of the lower background at the bottom
part of the rail move.

The dataset uses a 135-decoder source and a 30-frame encoder source. The
original is an MPEG system stream with video on channel 0.

SEQUENCE MPEG2 MP@ML PROG 320x240 chroma 160x120

fps 25 maxBps 100000 vbv 65536

Picture 320x240 display 320x240 pixel 1x1

The Encoding Process

A sequence of 30 frames is used for railgrind encoding. The resulting MPEG-2
file size is 122,578 bytes. The total runtime for one iteration of the encoding
process is 2.3 seconds on a 1.6-GHz reference platform.

Dataset #3: “Sign”

Description

“Sign” shows a person using sign language. There is a zoom-in effect to the
speaker, with a complex color background of people.

It is derived from an MPEG system stream with video on channel 1.

Artifacts may appear as small colorblocks appearing in the bottom lines of the
picture.

The dataset uses a 300-frame decoder source and a 30-frame encoder
source. The original input dimensions are 352x256, but the encoder only

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 24

correctly decodes this with image size set to 352x240.

SEQUENCE MPEG2 MP@ML PROG 352x240 chroma 176x120 fps 25

maxBps 95000 vbv 32768

Picture 352x240 display 352x240 pixel 1x1

The Encoding Process

The first 30 frames of sign are used for encoding. The resulting MPEG-2 file
size is 118,940 bytes. The total runtime for one iteration of the encoding
process is 1.9 seconds on a 1.6-GHz reference platform.

Dataset #4: “Zoom”

Description

“Zoom” is a beach scene with a rapid zoom-out effect. The original input was
an AVI file, extracted to bitmaps. These bitmaps were converted to PPM files
and re-encoded at 30 fps. The final YUV files were generated from the
encoded file.

“Zoom” uses a 65-frame decoder source and a 30-frame encoder source.

SEQUENCE MPEG2 MP@ML PROG 320x240 chroma 160x120

fps 30 maxBps 95000 vbv 65536

Picture 320x240 display 320x240 pixel 1x1

The Encoding Process

The first 30 frames are used for encoding. The resulting MPEG-2 file size is
96,170 bytes. The total runtime for one iteration of the encoding process is
3.3 seconds on a 1.6-GHz reference platform.

Dataset #5: “Marsface”

Description

Marsface is a rotating black and white radar picture of a Mars feature. The
feature is three dimensional with a perspective view.

Marsface uses 49-frame decoder and encoder sources.

The original is a 24-fps MPEG file. This file format is maintained for the
decoder. For encoding, the bitrate is increased as well as the fps rate. An fps
rate of 25 is the closest available setting in the encoder.

Original Attributes:

SEQUENCE PROG 192x192 chroma 96x96 fps 24

maxBps 0 vbv 32768

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 25

picture 192x192 display 192x192 pixel 1x1

Generated attributes:

SEQUENCE MPEG2 MP@ML PROG 192x192 chroma 96x96

fps 25 maxBps 95000 vbv 65536

picture 192x192 display 192x192 pixel 1x1

The Encoding Process

All 49 frames are used for encoding.

The resulting MPEG-2 file size is 70,209 bytes. The total runtime for one
iteration of the encoding process is 1.4 seconds on a 1.6-GHz reference
platform.

Processing consists of:
13. Reading the selected YUV frames.
14. Reading and interpreting the header information.
15. Reading and encoding frames of data
16. Processing the data based on the header information
17. Outputting the .mpeg file into memory
18. Calculating a PSNR value

A single iteration of the benchmark is complete when the end of the input file
is reached and no more data is available to be processed.

Quality
Measurements

EEMBC has developed a proprietary methodology for measuring the quality of
the MPEG-2 output based on peak signal-to-noise ratio (PSNR) code. PSNR is
a decibel measurement of noise power used widely and consistently to
measure picture and audio quality. In the EEMBC benchmarks, PSNR is
measured outside the benchmark timing loop and on the host, not on the
target board.

Double-Ended Signal Quality Measurement

The PSNR methodology implemented by EEMBC is enhanced to provide
individual scores for the encode and decode steps. This is still double-ended
signal quality measurement; we have just introduced a second set of encoder
reference files, and host processing steps, to provide additional information.

The host decoder is used to convert the output files from the embedded
encoder. These result files are then used to calculate the PSNR score for the
encoder. The final results for PSNR are a fundamentally different calculation
from benchmark timing. The Test Harness produces a benchmark timing
score represented as a single number.

For PSNR, each benchmark is required to produce large volumes of data, i.e.
on the order of several megabytes. This log file data is post-processed on the
host to generate a collection of PSNR scores for each benchmark. The PSNR

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 26

scores are aggregated by geometric mean. The traditional tab-delimited log
file for benchmark timing plus an additional file in comma-separated value
(.csv) format is produced for PSNR. Both summary files are readable by
spreadsheet programs.

PSNR requires individual frame files from the target and a set of reference
files for comparison. The YUV file format involves three separate files for each
frame.

PSNR Utility

A utility program called PSNR.exe consists of the following components:

1. Math to calculate PSNR of two comparison images, or frames using
sum of squared distances method. The advantage of this method is
that it can handle images of different dimensions and stride. It is also
efficient for handling the volume of files we are processing in a
reasonable time.

2. Math to calculate PSNR of two integer arrays used for processing PCM
data. The bit depth of the PCM data is also used to support 8-, 16-,
24-, and 32-bit PCM data as required.

3. PSNR aggregation methods which include:
a. geometric mean calculation
b. arithmetic mean calculation
c. sample variance calculation
d. detection and accumulation of exact match frames (PSNR

infinity)
e. detection and accumulation of all zero frames (PSNR infinity)

4. File processing routines to locate files in the EEMBC tree paths and
filename processing to generate frame file names based on file format.
This minimizes the post processing steps by locating all of the files
required with a few parameters.

5. Image processing to determine file types, the file formats used for
reading YUV12 and AIFF formats, and to output YUV12 as PGM and
AIFF data as PCM.

6. A standard method for reviewing frames by developers with three
types of error images for YUV, and PCM files for MP3. Error images
can be generated to identify specific problems during porting. They
can also be used in certification when verification beyond basic PSNR
is needed.

Knee (2000) [2] is a relevant overview of PSNR, the error image, and its
usage to evaluate quality.
(www.broadcastpapers.com/sigdis/Snell&WilcoxQualityMeasure02.htm)

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 27

Analysis of
Computing
Resources

There are two implementations, fixed point and floating point. The floating-
point version is optional. This is a benchmark that concentrates mostly on
computational processing rather than file I/O. PSNR scores must be reported.

References [1] Loeffler, C., A. Ligtenberg and G. Moschytz. “Practical Fast 1-D DCT
Algorithms with 11 Multiplications,” Proc. Int'l. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP 89), pp. 988-991.

[2] Knee, Mike. “A Single-Ended Picture Quality Measure for MPEG-2,”
(2000);
http://www.broadcastpapers.com/sigdis/Snell&WilcoxQualityMeasure02.htm

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 28

DENBench™ Version 1.0 Benchmark Name: MPEG-4
Decode

Highlights
 Benchmarks potential performance of

an MPEG-4 decoder
 Five different test files stress different

encoder aspects

 Integer implementation
 Based on open source XviD code base
 Implements PSNR to check the output

quality

Application The MPEG-4 decode benchmark provides an indication of the
potential performance of a microprocessor subsystem running
an MPEG-4 decoder application. MPEG-4 encode and decode are
both popular in mobile devices and on the Internet, as well as in
digital television and video over IP applications. We implement
the XviD codec and code base with modifications for
benchmarking and proprietary datasets.

Benchmark Description EEMBC’s XviD implementation uses simple profile/level 3 to
encode the files. We are decoding the results of the MPEG-4
Encoder. The input data sets (YUV files) are the same as for
EEMBC’s MPEG-2 benchmarks, and the output of the MPEG-4
Decode benchmarks are mp4u files that can be compared to
their MPEG-2 counterparts.

The benchmark contains a fixed-point integer implementation.

The input is an mp4u (MPEG4 raw container) file, and the
output is series of YUV files which can be viewed using GIMP or
another picture viewer to help verify that the decoding was
correct (assuming you use the uuencode option in the Test
Harness. To verify correctness of the output we measure the
quality using Peak Signal to Noise Ratio analysis.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 29

 Description of Datasets

Graphic

Graphic is a black background ray traced sequence with
reflections, and moving light sources with coronas.

The primary elements are the reflections, a secondary halo from
the first light source, and a few small artifacts on the front most
graphic.

It is derived from an mpeg transport stream of encapsulated
video.

Rail Grind
1. Notes

a. 135 frame decoder source
b. 30 frame encoder source

Rail Grind is a sequence of a skateboarder doing a grind move
down a handrail and landing in an open space. The camera is
centered on the skateboarder, which results in a fast moving
color background.

The artifacts to watch for are tearing of the lower background at
the bottom part of the rail move.

The original is an mpeg system stream with video on channel 0.

Sign
1. Notes

a. 300 frame decoder source
c. 30 frame encoder source

Sign shows a person using sign language. There is a zoom-in
effect to the speaker, with a complex color background of
people.

It is derived from an mpeg system stream with video on
channel 1.

The artifacts to look for are some small colorblocks appearing in
the bottom lines of the picture.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 30

Zoom
1. Notes

a. 65 frame decoder source
b. 30 frame encoder source

Zoom is a beach scene with a rapid zoom out effect.

The original input was an AVI file, extracted to bitmaps. These
bitmaps were converted to PPM files, and re-encoded at 30 fps.
The final YUV files were generated from the encoded file.

Marsface
1. Notes

a. 49 frame decoder source
d. 49 frame encoder source

Marsface is a rotating black and white radar picture of a Mars
feature. The feature is three dimensional with a perspective
view.

Benchmark Processing Processing consists of:
19. Reading the selected YUV frames.
20. Reading and interpreting the header information.
21. Read and encode frames of data
22. Process the data based on the header information
23. Output the .mpeg file into memory
24. A PSNR value is calculated

A single iteration of the benchmark is complete when the end of
the input file is reached and no more data is available to be
processed.

Quality Measurements

EEMBC has developed a proprietary methodology for measuring
the quality of the MPEG-2 output based on peak signal-to-noise
ratio (PSNR) code. PSNR is a decibel measurement of noise
power used widely and consistently to measure picture and
audio quality. In the EEMBC benchmarks, PSNR is measured
outside the benchmark timing loop and on the host, not on the
target board.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 31

Double-Ended Signal
Quality Measurement

The PSNR methodology implemented by EEMBC is enhanced to
provide individual scores for encode and decode steps. This is
still double-ended signal quality measurement; we have just
introduced a second set of encoder reference files, and host
processing steps, to provide additional information.

The host decoder is used to convert the output files from the
embedded encoder. These result files are then used to calculate
the PSNR score for the encoder. The final results for PSNR are a
fundamentally different calculation from benchmark timing. The
Test Harness produces a benchmark timing score represented
as a single number.

For PSNR, each benchmark is required to produce large volumes
of data, i.e. on the order of several megabytes. This log file
data is post-processed on the host to generate a collection of
PSNR scores for each benchmark. The PSNR scores are
aggregated by geometric mean. The traditional tab-delimited
log file for benchmark timing plus an additional file in comma-
separated value (.csv) format is produced for PSNR. Both
summary files are readable by spreadsheet programs.

PSNR requires individual frame files from the target and a set of
reference files for comparison. The YUV file format involves
three separate files for each frame.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 32

PSNR Utility

A utility program called PSNR.exe consists of the following
components:

7. Math to calculate PSNR of two comparison images, or
frames using sum of squared distances method. The
advantage of this method is that it can handle images of
different dimensions and stride. It is also efficient for
handling the volume of files we are processing in a
reasonable time.

8. Math to calculate PSNR of two integer arrays used for
processing PCM data. The bit depth of the PCM data is
also used to support 8-, 16-, 24-, and 32-bit PCM data
as required.

9. PSNR aggregation methods which include:
a. geometric mean calculation
b. arithmetic mean calculation
c. sample variance calculation
d. detection and accumulation of exact match

frames (PSNR infinity)
e. detection and accumulation of all zero frames

(PSNR infinity)
10. File processing routines to locate files in the EEMBC tree

paths and filename processing to generate frame file
names based on file format. This minimizes the post
processing steps by locating all of the files required with
a few parameters.

11. Image processing to determine file types, the file
formats used for reading YUV12 and AIFF formats, and
to output YUV12 as PGM and AIFF data as PCM.

12. A standard method for reviewing frames by developers
with three types of error images for YUV, and PCM files
for MP3. Error images can be generated to identify
specific problems during porting. They can also be used
in certification when verification beyond basic PSNR is
needed.

Knee (2000) is a relevant overview of PSNR, the error image,
and its usage to evaluate quality.
(www.broadcastpapers.com/sigdis/Snell&WilcoxQualityMeasure
02.htm)

Analysis of Computing
Resources

The MPEG-4 Decode benchmark is offered in a fixed-point
version only. This is a benchmark that concentrates mostly on
computational processing rather than file I/O. PSNR scores
must be reported to qualify for certification and publication.

Optimizations Allowed Out of the Box/Standard C
Full Fury/Optimized

• The C code must not be changed for out of the box
unless it must be modified to get it to compile. All

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 33

changes must be documented and must not have a
performance impact.

• For Out of the Box, additional hardware can be used if it
does not require code changes.

• All optimized libraries must be part of the standard
compiler package, and/or available to all customers.

• The EEMBC Test Harness Regular or Test Harness Lite
may be used. Test harness changes may be made for
portability reasons if they do not impact performance.

• For Optimized, the basic algorithm may be changed
and/or the code can be rewritten in assembler. We
report PSNR scores to help you judge quality of
computational processing.

• For Optimized, optimized libraries can be used if they are
publicly available.

• For Optimized, hardware-assist can be used if it is on the
same processor as that being benchmarked.

• For Optimized, in-lining is allowed.
• Additional data files are used by the EEMBC Technology

Center (ETC) during certification to ensure the
correctness of the optimized benchmark. You should not
assume data patterns during optimization.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 34

DENBench™ Version 1.0 Benchmark Name: MPEG-4
Encode

Highlights
 Benchmarks potential performance of

an MPEG-4 encoder
 Five different test files stress different

encoder aspects

 Integer implementation
 Based on open source XviD code base
 Implements PSNR to check the output

quality

Application The MPEG-4 Encode benchmark provides an indication of the
potential performance of a microprocessor subsystem running
an MPEG-4 encoder application. MPEG-4 encode and decode are
both popular in mobile devices and on the Internet, as well as in
digital television and video over IP applications. We implement
the XviD codec and code base with modifications for
benchmarking and proprietary datasets.

Benchmark Description EEMBC’s XviD implementation uses simple profile/level 3 to
encode the files. Since we generate the encoded files from raw
YUV images, we have the option to create encoded MPEG-4 files
with different profiles if needed.

The input data sets (YUV files) are the same as for EEMBC’s
MPEG-2 benchmarks.

Within the MPEG-4 standard, profiles and levels are defined to
ensure interoperability between encoders and decoders. Profiles
restrict the MPEG-4 features used, such as b-frames and
quarterpel interpolation, while levels impose restriction on bit
rate, memory, and complexity. These profiles are published in
the MPEG-4 visual standard and available informally from the
M4IF website. DivXNetworks has also defined its own profiles
and levels, which are supported by hardware carrying the DivX
Certified logo. XviD, the open source code base, is DivX spelled
backwards.

The XviD encoder can be configured to generate any of the
profiles above, although often it is configured to generate
content using the complete ASP feature set. In addition, XviD
presently does not perform video-buffer-verification, and as
such, XviD content may not conform to the bit rates specified in
any levels (ISO/IEC, DivX, or otherwise).

The M4IF definitions and discussion of profile and level are here:

http://www.m4if.org/resources/profiles/index.php

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 35

The benchmark contains two different variations: a fixed-point
integer and an optional single-precision floating point (f_32)
implementation.

The input is an a series of .PPM files along with YUV, and the
outputs are mp4u files which can be decoded by XVid to help
verify that the encoding was correct (assuming you use
uuencode option in the Test Harness). Correctness test is also
performed by measuring quality using Peak Signal to Noise
Ratio analysis.

Description of Datasets

Graphic

Graphic is a black background ray traced sequence with
reflections, and moving light sources with coronas.

The primary elements are the reflections, a secondary halo from
the first light source, and a few small artifacts on the front most
graphic.

It is derived from an mpeg transport stream of encapsulated
video.

Graphic MPEG-4 Encode
A sequence of 7 frames is used for encoding. This results in a 3-
second run, and keeps the ram file requirements under 4 Mb.

Rail Grind
2. Notes

a. 135 frame decoder source
b. 30 frame encoder source

Rail Grind is a sequence of a skateboarder doing a grind move
down a handrail and landing in an open space. The camera is
centered on the skateboarder, which results in a fast moving
color background.

The artifacts to watch for are tearing of the lower background at
the bottom part of the rail move.
The original is an mpeg system stream with video on channel 0.

Rail Grind MPEG-4 Encoding
A sequence of 30 frames is used for railgrind encoding.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 36

Sign
2. Notes

a. 300 frame decoder source
c. 30 frame encoder source

Sign shows a person using sign language. There is a zoom-in
effect to the speaker, with a complex color background of
people.

It is derived from an mpeg system stream with video on
channel 1.

The artifacts to look for are some small colorblocks appearing in
the bottom lines of the picture.

The original input dimensions are 352x256, however the
encoder only correctly decodes this with image size set to
352x240.

Sign MPEG-4 Encoding
The first 30 frames of sign are used for encoding.

Zoom
2. Notes

a. 65 frame decoder source
b. 30 frame encoder source

Zoom is a beach scene with a rapid zoom out effect.

The original input was an AVI file, extracted to bitmaps. These
bitmaps were converted to PPM files, and re-encoded at 30 fps.
The final YUV files were generated from the encoded file.

Zoom MPEG-4 Encoding
The first 30 frames are used for encoding.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 37

Marsface
2. Notes

a. 49 frame decoder source
d. 49 frame encoder source

Marsface is a rotating black and white radar picture of a Mars
feature. The feature is three dimensional with a perspective
view.

The original is a 24-fps mpeg file. This file format is kept for the
deocder. For encoding, the bitrate is increased as well as the
fps. An fps of 25 is the closest available setting in the encoder.

Original Attributes:
SEQUENCE PROG 192x192 chroma 96x96 fps 24 maxBps 0 vbv
32768
picture 192x192 display 192x192 pixel 1x1

Marsface MPEG-4 Encoding
All 49 frames are used for encoding.

Benchmark Processing Processing consists of:
25. Reading the selected YUV frames.
26. Reading and interpreting the header information.
27. Read and encode frames of data
28. Process the data based on the header information
29. Output the .mpeg file into memory
30. A PSNR value is calculated

A single iteration of the benchmark is complete when the end of
the input file is reached and no more data is available to be
processed.

Quality Measurements

EEMBC has developed a proprietary methodology for measuring
the quality of the MPEG-2 output based on peak signal-to-noise
ratio (PSNR) code. PSNR is a decibel measurement of noise
power used widely and consistently to measure picture and
audio quality. In the EEMBC benchmarks, PSNR is measured
outside the benchmark timing loop and on the host, not on the
target board.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 38

Double-Ended Signal
Quality Measurement

The PSNR methodology implemented by EEMBC is enhanced to
provide individual scores for encode and decode steps. This is
still double-ended signal quality measurement; we have just
introduced a second set of encoder reference files, and host
processing steps, to provide additional information.

The host decoder is used to convert the output files from the
embedded encoder. These result files are then used to calculate
the PSNR score for the encoder. The final results for PSNR are a
fundamentally different calculation from benchmark timing. The
Test Harness produces a benchmark timing score represented
as a single number.

For PSNR, each benchmark is required to produce large volumes
of data, i.e. on the order of several megabytes. This log file
data is post-processed on the host to generate a collection of
PSNR scores for each benchmark. The PSNR scores are
aggregated by geometric mean. The traditional tab-delimited
log file for benchmark timing plus an additional file in comma-
separated value (.csv) format is produced for PSNR. Both
summary files are readable by spreadsheet programs.

PSNR requires individual frame files from the target and a set of
reference files for comparison. The YUV file format involves
three separate files for each frame.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 39

PSNR Utility

A utility program called PSNR.exe consists of the following
components:

13. Math to calculate PSNR of two comparison images, or
frames using sum of squared distances method. The
advantage of this method is that it can handle images of
different dimensions and stride. It is also efficient for
handling the volume of files we are processing in a
reasonable time.

14. Math to calculate PSNR of two integer arrays used for
processing PCM data. The bit depth of the PCM data is
also used to support 8-, 16-, 24-, and 32-bit PCM data
as required.

15. PSNR aggregation methods which include:
a. geometric mean calculation
b. arithmetic mean calculation
c. sample variance calculation
d. detection and accumulation of exact match

frames (PSNR infinity)
e. detection and accumulation of all zero frames

(PSNR infinity)
16. File processing routines to locate files in the EEMBC tree

paths and filename processing to generate frame file
names based on file format. This minimizes the post
processing steps by locating all of the files required with
a few parameters.

17. Image processing to determine file types, the file
formats used for reading YUV12 and AIFF formats, and
to output YUV12 as PGM and AIFF data as PCM.

18. A standard method for reviewing frames by developers
with three types of error images for YUV, and PCM files
for MP3. Error images can be generated to identify
specific problems during porting. They can also be used
in certification when verification beyond basic PSNR is
needed.

Knee (2000) is a relevant overview of PSNR, the error image,
and its usage to evaluate quality.
(www.broadcastpapers.com/sigdis/Snell&WilcoxQualityMeasure
02.htm)

Analysis of Computing
Resources

There are two implementations, fixed point and floating point.
The floating-point version is optional. This is a benchmark that
concentrates mostly on computational processing, rather than
file I/O. PSNR scores must be reported.

Optimizations Allowed Out of the Box/Standard C
Full Fury/Optimized

• The C code must not be changed for out of the box
unless it must be modified to get it to compile. All

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 40

changes must be documented and must not have a
performance impact.

• For Out of the Box, additional hardware can be used if it
does not require code changes.

• All optimized libraries must be part of the standard
compiler package, and/or available to all customers.

• The EEMBC Test Harness Regular or Test Harness Lite
may be used. Test harness changes may be made for
portability reasons if they do not impact performance.

• For Optimized, the basic algorithm may be changed
and/or the code can be rewritten in assembler. We
report PSNR scores to help you judge quality of
computational processing.

• For Optimized, optimized libraries can be used if they are
publicly available.

• For Optimized, hardware-assist can be used if it is on the
same processor as that being benchmarked.

• For Optimized, in-lining is allowed.
• Additional data files are used by the EEMBC Technology

Center (ETC) during certification to ensure the
correctness of the optimized benchmark. You should not
assume data patterns during optimization.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 41

DENBench™ Version 1.0 Benchmark Name: RGB to
CMYK Conversion

Highlights
 Benchmarks digital image processing

performance in printers and other
digital imaging products

 Explores basic arithmetic and
minimum value detection capability

 Provides opportunities for Full Fury
benchmark optimization

 Conditional move and multi-byte
processing, exercising SIMD and
VLIW architectures

 Integer implementation
 Seven datasets provide a larger

workload compared to the single
dataset of ConsumerBench Version
1.1

 Input is comprised of .ppm files
 Implements Non-Intrusive Cyclical

Redundancy Checksum (CRC) to
Check Output Quality

Application RGB to CMYK conversion is widely used in color printers.
RGB inputs from PC data are converted to CMYK color
signals for printing.

Benchmark Description This benchmark explores the target CPU’s ability to
perform basic arithmetic and minimum value detection.
The R, G, B 8-bit pixel color image input is fed to the
following equation:

/* calculate complementary colors */
c = 255 – R;
m = 255 – G;
y = 255 – B;
/* find the black level k */
K = minimum (c,m,y)
/* correct complementary color lever based on k
*/
C = c – K
M = m – K
Y = y - K

RGB values are in the range of [0:255]

CMYK values are in the range of [0:255]

The input and output data sizes vary. For example, the
320x240 data for RGB and CMYK is stored sequentially
as:

R[0], G[0], B[0], R[1], G[1], B[1], R[76799], G[76799],
B[76799]

C[0], M[0], Y[0], K[0], C[1], M[1], Y[1],K[1] C[76799],
M[76799], Y[76799], K[76799]

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 42

The pointers are incremented by one to access R, G, B or
C, M, Y, K data in this order. If the benchmark score is
extrapolated for a larger image, the processing time will
be almost linearly proportional to the pixel count (e.g.
for a 640 x 480 image, it will be multiplied times 4). The
iteration/second score will be the inverse (e.g. for a 640
x 480 image, iterations/sec will be multiplied by .25).

There is data dependency in the cycle counts for the
minimum value K search, due to branch taken or not
taken. If this operation is handled by conditional move,
the cycle will be constant.

Description of Datasets

Rose Small

Rose Small is the default file for the JPEG Compression
benchmark. It is a single image that is contained in both
BMP and JPEG formats. The dimensions are 227x149,
256 colors. The image contains 256 unique colors.

Goose

Goose is the default file for the JPEG Decompression
benchmark. It is a single image that is contained in both
BMP and JPEG formats. The dimensions are 320x240,
256 colors. The image has 22,921 unique colors.

Mars Former Lakes

Mars Former Lakes is a NASA graphics picture. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 800x482, 16 million
colors. The image has 91,152 unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 43

Dragon Fly

Dragon Fly is an image containing highlights, and a wide
range of contrast. It is a single image that is contained in
BMP, PPM, PGM, and JPEG formats. The dimensions are
606x896, 16 million colors. The image has 162,331
unique colors.

EEMBC Group Shot

EEMBC Group Shot is a snapshot of EEMBC Board of
Directors members at a 2003 meeting. It has a large
number of flesh tones, and the highest number of unique
colors in the library. It is a single image that is contained
in BMP, PPM, PGM, and JPEG formats. The dimensions
are 640x480, 16 million colors. The image has 181,872
unique colors.

David and Dogs

David and Dogs is a snapshot of David Weiss and his
dogs Sandy, Toga, and Trudy during a rare snowstorm in
Austin. It is used as a grayscale image, with good
contrast details in the melting snow. It is a single image
that is contained in BMP, PPM, PGM, and JPEG formats.
The dimensions are 564x230, 256 shades of gray. The
image has 215 unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 44

Mandrake

Mandrake is a close up picture of a Mandrill Baboon
(sometimes misnamed as "Mandrake"). It has a lot of
detail and colors. It has been the default image for the
filter benchmarks in both color and gray scale. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 320x240, 16 million
colors. The image has 71,482 unique colors.

Galileo

Galileo is a NASA composite image based on actual
images of the Jupiter and several of its moons. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 290x415, 16 million
colors. The image has 36,557 unique colors, and also
contains “real black” for over 30% of the picture, which
is interesting from an optimization perspective.

 Output quality is measured using Non Intrusive CRC
code developed by the EEMBC Certification Laboratory
(ECL, LLC). It does not affect the benchmark score.

Analysis of Computing
Resources

A “for loop” calculates the conversion of one set of RGB
inputs and CMYK outputs at a time. A set of R, G, B input
data is read from the memory by incrementing a read
pointer. A set of C, M, Y, K output data is written back to
the memory by incrementing a write pointer. There is no
complex two-dimensonal access.

The complementary color calculation and correction are
simple subtract calculations without any MAC operation.

The minimum value search has two branches for
processing each pixel.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 45

If (c<m) {
K = (Byte)(c<y ? c:y);
}
else {
K = (Byte)(m<y ? m:y);
}

This can be a very expensive routine because of the
branch penalty.

Full-Fury Optimization: By using the compare and
conditional moves, the branch penalty can be avoided.
VLIW and SIMD can process multiple bytes of data at a
time. For example, a four-way SIMD microprocessor can
handle 4 x 8-bit data every cycle.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 46

DENBench™ Version 1.0 Benchmark Name: RGB to
YIQ Conversion

Highlights
 Benchmarks digital video processing

performance
 Provides opportunities for Full Fury

optimization
 Integer implementation
 Seven datasets expand workload

compared to comparable benchmark
in ConsumerBench Version 1.1

 Input is comprised of .ppm files
 Implements Non-Intrusive Cyclical

Redundancy Checksum (CRC) to
Check Output Quality

Application RGB to YIQ conversion is used in the NTSC encoder
where the RGB inputs from the camera are converted to
luminance (Y) and chrominance (I,Q) information. In the
NTSC encoder, the I,Q signals are modulated by a
subcarrier and added to the Y signal. Historically, when
color TVs appeared in the market, they had to coexist
with the existing monochrome TVs and this was made
possible with the NTSC signal structure. The
chrominance signals are averaged out as a fine mesh of
invisible signals in the monochrome TV sets. YUV used in
the PAL standard and YCbCr used in the JPEG standard
have different encodings. All three standards share the
same luminance signal Y but the chrominance
calculations are different. The matrix calculation scheme
used in the RGB to YIQ can be applied to these
standards too.

In the actual products, this trivial calculation is usually
performed in dedicated hardware, especially in digital
video products. For cost saving and flexibility, this
algorithm can be implemented in software if the CPU is
powerful enough and where the digital image is a still
picture.

Benchmark Description This benchmark explores the capability of the CPU to
perform a straightforward matrix multiply/accumulate
calculation.

The R, G, B 8-bit pixel color image input is processed as
follows:

Y = 0.299*R + 0.587*G + 0.114*B

I = 0.596*R – 0.275*G – 0.321*B

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 47

Q = 0.212*R – 0.523*G + 0.311*B

RGB values are in the range of [0:255]. The conversion
coefficients are 16 bits. The multiply/accumulate results
are shifted right by 16 bits. Before the shift, 1 is added
to a bit location right to the LSB of the shifted result for
rounding to the nearest integer. The output is 8-bit data.
Y is in the range of [0,255] and I,Q in the range of [-
127, 127]. The input and output data size is 320 pixels
in the horizontal direction and 240 pixels in the vertical
direction.

The 320x240 data for RGB and YIQ are stored
sequentially as:

R[0], G[0], B[0], R[1], G[1], B[1], R[76799], G[76799],
B[76799]

Y[0], I[0], Q[0], Y[1], I[1], Q[1], Y[76799], I[76799],
Q[76799]

The pointers are just incremented by one to access R,
G,B or Y, I, Q data in this order.

Description of Datasets

Rose Small

Rose Small is the default file for the JPEG Compression
benchmark. It is a single image that is contained in both
BMP and JPEG formats. The dimensions are 227x149,
256 colors. The image contains 256 unique colors.

Goose

Goose is the default file for the JPEG Decompression
benchmark. It is a single image that is contained in both
BMP and JPEG formats. The dimensions are 320x240,
256 colors. The image has 22,921 unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 48

Mars Former Lakes

Mars Former Lakes is a NASA graphics picture. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 800x482, 16 million
colors. The image has 91,152 unique colors.

Dragon Fly

Dragon Fly is an image containing highlights, and a wide
range of contrast. It is a single image that is contained in
BMP, PPM, PGM, and JPEG formats. The dimensions are
606x896, 16 million colors. The image has 162,331
unique colors.

EEMBC Group Shot

EEMBC Group Shot is a snapshot of EEMBC Board of
Directors members at a 2003 meeting. It has a large
number of flesh tones, and the highest number of unique
colors in the library. It is a single image that is contained
in BMP, PPM, PGM, and JPEG formats. The dimensions
are 640x480, 16 million colors. The image has 181,872
unique colors.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 49

David and Dogs

David and Dogs is a snapshot of David Weiss and his
dogs Sandy, Toga, and Trudy during a rare snowstorm in
Austin. It is used as a grayscale image, with good
contrast details in the melting snow. It is a single image
that is contained in BMP, PPM, PGM, and JPEG formats.
The dimensions are 564x230, 256 shades of gray. The
image has 215 unique colors.

Mandrake

Mandrake is a close up picture of a Mandrill Baboon
(sometimes misnamed as "Mandrake"). It has a lot of
detail and colors. It has been the default image for the
filter benchmarks in both color and gray scale. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 320x240, 16 million
colors. The image has 71,482 unique colors.

Galileo

Galileo is a NASA composite image based on actual
images of the Jupiter and several of its moons. It is a
single image that is contained in BMP, PPM, PGM, and
JPEG formats. The dimensions are 290x415, 16 million
colors. The image has 36,557 unique colors, and also
contains “real black” for over 30% of the picture, which
is interesting from an optimization perspective.

Output quality is measured using Non Intrusive CRC
code developed by the EEMBC Certification Laboratory
(ECL, LLC). It does not affect the benchmark score.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 50

Analysis of Computing
Resources

Out of the Box Benchmark: A “for loop” calculates the
conversion of one set of RGB inputs and YIQ outputs at a
time. A set of R, G, B input data is read from the
memory by incrementing a read pointer. A set of output
Y, I, Q output data is written back to the memory by
incrementing a write pointer. There is no complex two-
dimensonal access such as that in the high pass grey-
scale filter benchmark. The calculation is a
straightforward multiplication and accumulation that a
microprocessor with a single-cycle MAC unit will benefit
from. The code size is small and easily fits in to a small
L1 Instruction Cache.

Full-Fury Benchmark: Because of the simple structure of
the multiplication and accumulation, a VLIW or SIMD
architecture with multiple of MAC units can be used to
accelerate performance. A further optimization is the
loading of multiple bytes at a time. Software pipelining
could be used to pass the loaded data efficiently to the
MAC unit for calculation.

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 51

DENBench™ Version 1.0 Benchmark Name: RSA

Highlights
 Benchmarks the Rivest, Shamir, and

Adleman (RSA) cryptography algorithm
 Created in part from SSLEAY (the

open-source Netscape Secure Socket
Layer source code base courtesy of Eric
Young)

 Roundtrip implementation and self-
checking assures accuracy

 A component of the DENBench
cryptography sub-suite

 Computationally intensive and
accurate implementation of RSA
algorithm modified to PKCS standards

 Uses Optimal Asymmetric Encryption
Padding (OAEP)

Applications
and
Restrictions

The RSA algorithm was first described in 1977 by Ron Rivest, Adi Shamir,
and Len Adleman at MIT. The letters RSA are the initials of their surnames.
According to Wikipedia, RSA was one of the first “strong encryption” public
key cryptography schemes. It can be used for both digital signatures and
encryption. The RSA cipher is used in numerous cryptographic protocols,
including Transport Layer Security (TLS), Secure Socket Layer, (SSL),
Secure Shell (SSH), and Internet Protocol Security (IPSEC).

RSA is much slower and therefore more computationally intensive than DES,
and unlike DES is not symmetrical. Thus, there are different keys for
encryption and decryption.

Although it has been proven to be vulnerable to certain attacks (including
timing, man-in-the-middle, and adaptive chosen cipher attacks), it is an
extremely popular algorithm used in many e-commerce (internet) and m-
commerce (mobile) applications. Some people choose to implement DES,
Triple-DES, or AES for stronger encryption. The major concern is really the
“shared secret key” nature of the asymmetric system. Because RSA is part
of the Secure Socket Layer system used so widely on the internet, and
because it can be hacked by determined foes, it is now often paired with
Optimal Asymmetric Encryption Padding (hence the term RSA-OAEP), and in
fact EEMBC has implemented the benchmark as an RSA-OAEP system. In the
benchmark, RSA-OAEP are used together with the Public Key Cryptography
Standards (PKCS). The EEMBC code is based on PKCS 1.5 and OAEP 2.0R1
and implements Shoup’s improvements to OAEP (in other words, EME-
OAEP).

The EEMBC RSA benchmark is a cipher algorithm that provides an indication
of the potential performance of a microprocessor or digital signal processor
subsystem doing RSA cryptographic encryptions and decryptions.

This benchmark, and the source code, is subject to the following restrictions:

 An Industry-Standard Benchmark Consortium

EEMBC DENBench Data Book www.eembc.org 52

Applications
and
Restrictions

This software is subject to the following Export Restrictions (exportation
from the United States of America to non-USA countries): Implementations
of cryptography are subject to United States Federal Government export
controls. Export controls on commercial encryption products are
administered by the Bureau of Export Administration (BXA)
http://www.bxa.doc.gov/Encryption/ in the U.S. Department of Commerce.
Regulations governing exports of encryption are found in the Export
Administration Regulations (EAR), 15 C.F.R. Parts 730-774. Compliance with
export restrictions is the responsibility of each individual EEMBC member,
not EEMBC.

Benchmark
Description

The EEMBC RSA benchmark handling of private key operations does not
depend on the private key components being present (for example, a key
stored in external hardware). The recommended number of iterations is 30,
and it takes about a second to run on a desktop x86 PC at about 1.7 GHz.
Checking is by Cyclical Redundancy Checksum (CRC).

Analysis of
Computing
Resources

The benchmark is computationally challenging: addition, multiplication,
extensive use of division, bit shifting, matrix math, bitwise operators such as
XOR, and other operators are used. It is implemented in integer math. This
benchmark is almost exclusively CPU bound, and the quality of the math
library as well as memory library has an effect on performance. Memory
moves are performed repeatedly, so optimized C library mem* functions
would improve performance. Use of malloc() and heap is extensive, so
optimizing memory management will yield better results. Sophisticated
superscalar architectures scheduled by sophisticated compilers (or assembly
language implementations) can take advantage of some parallelism.
Architectures that require aligning for good performance but that do not
automatically pad to obtain alignment will suffer. Odd C syntax with
numerous breaks and jumps means this benchmark is unlikely to be
optimized away by compiler trickery, although good standard optimization
techniques (including loop unrolling and hoisting loads) would improve
performance. A tool chain must implement a fair fraction of the standard C
library, including rand() functionality.

