
w w w . e e m b c . o r g

software
benchmark
data book

ConsumerBench™1.1

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 1

Table of Contents

High Pass Grey-Scale Filter ..2

JPEG ..4

RGB to CMYK Conversion ..8

RGB to YIQ Conversion ...10

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 2

ConsumerBench™ Version 1.1 Benchmark Name:

High Pass Grey-Scale Filter

Highlights
 Benchmarks performance for

digital image processing used in
digital still camera and other
digital image products

 Explores 2-D data array access and
multiply / accumulate capability.

 This benchmark has potential for
Full-Fury benchmark optimization,
especially by SIMD and VLIW
architectures.

Application A high pass grey-scale filter is used in the front end processing of DSCs

(Digital Still Camera). RGB data from either CCD or CMOS sensors is pre-
processed by this filter to deliver image enhancement, and then passed to
the JPEG image compression processing. This filter takes a “blurry” image
and sharpens it with a 2-dimensional spatial filter.
DSCs implement this filter either in software or hardware, with software
giving the flexibility to add customization for picture quality. The number of
filter taps can vary from 3(H) x 3(V) to more than 5(H) x 5(V).
This benchmark is one of the most frequently used algorithms in image
processing and represents a good measure of the CPU performance in digital
imaging products.

Benchmark
Description

This benchmark explores the target CPU’s capability to perform two
dimensional data array access and multiply/accumulate calculation.
For each pixel in the image, the filter calculates the output result from the 9
pixels (including the center pixel) multiplied by filter coefficients,
accumulated and then shifted left by 8-bits. The 2-dimensional coefficients
used here are:

F11
 F12
 F13

F21
 F22
 F23

F31
 F32
 F33

-28
 -28
 -28

-28
 255
 -28

-28
 -28
 -28

=

Each pixel is computed according to the following equation:.

Here, P(i) is the pixel intensity, c is the center location of the filter window, w
is the width of the input image. The data type of P(i) is Byte, and the two
dimensional data is arranged in a linear way. Therefore addition or

F11*P(c-w-1)
+F12*P(c-1)
+F13*P(c+w-1)

+F21*P(c-w)
+F22*P(c)
+F23*P(c+w)

+F31*P(c-w+1)
+F32*P(c+1)
+F33*P(c+w+1))

PelValue = (Short)(

Out = (Byte)(PelValue >>8);

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 3

subtraction of the horizontal image width “w” and offset of “-1” or “+1” are
required to retrieve the 2-dimension window data. The accumulation is
performed as a 16-bit data and the final output data is converted to a Byte
data after a shift right by 8-bits. The top/left and right/left borders are black
out by assigning “BLACK” value of 0.

The input data size is 320-pixels in the horizontal direction and 240-pixels in
the vertical direction. This is a monochrome or gray-scale calculation. It is
not an RGB calculation where the same process is performed three times.
Usually the enhancement is performed just in the luminance signal Y, which
is the gray-scale signal.
If the benchmark score is extrapolated for a larger image, the processing
time will be almost linearly proportional to the pixel count (e.g. For a 640 x
480 image, it will be x4 times). The iteration/sec score will be the inverse
e.g. for a 640 x 480 image, iteration/sec it will be x1/4.

Analysis of
Computing
Resources

Out of the Box Benchmark: A ‘for loop’ calculates the filter output one
pixel at a time. For one pixel calculation, the center pixel itself and the eight
neighbor pixel data should be loaded. This is a time consuming process,
considering the offset/width index calculation, and the time spent for the
memory or cache access. Higher performance would be expected from a
microprocessor with a single-cycle MAC unit.

Full-Fury Benchmark: Because of the simple structure of the multiplication
and accumulation, a VLIW or SIMD architecture with multiple MAC units are
able to offer a simple acceleration. Another possible optimization is loading
multiple Bytes at a time, although a SIMD architecture may show some
overhead for the rearranging the data to feed the SIMD engine.

Regarding the memory architecture, the image data is repeatedly used for
the consecutive window and can benefit from a Data Cache. The code size is
trivial and will easily fit in to a small L1 Instruction Cache.

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 4

ConsumerBench™ Version 1.1 Benchmark Name: JPEG

Highlights

 Benchmarks Potential Performance
for still picture image coding (e.g.
still camera)

 Compression and decompression
benchmarks

 Integer math, with diverse operand
types, accessing large image
memories

Application The JPEG compression benchmark takes an image and encodes it to produce

a compressed representation. The JPEG image compression standard
provides for a wide range of options in the way that images are compressed.
The benchmark uses the baseline subset of image compression “tools” with
parameters that would generally be regarded as typical.

The JPEG decompression benchmark essentially reverses the process of the
compression benchmark. Since the compressed image that is used by the
benchmark is that produced by the compression benchmark (above) it uses
the same set of image coding tools and parameters.

This is the particular image processed during these benchmarks:

The benchmark provides an indication of the potential performance of
a microprocessor in an application requiring still-image compression
and decompression (for example a still picture camera).

Benchmark
Description

The JPEG compression benchmark takes an image and encodes it. The image
used in the benchmark is of relatively low resolution (320 pixels by 240 lines)
represented in the RGB (Red-Green-Blue) color space, with each component
being represented by 8-bit data.

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 5

The benchmark first performs a number of preprocessing steps on the image
data:

o The image is color-space converted to a YCrCb color space that uses a
luminance, Y, component (a black-and-white image) together with two
color-difference components, Cr and Cb.

o The two color difference components are scaled so as to have one half
the number of pixels and one half the number of lines as the
luminance component.

The benchmark code then produces the JPEG header information which
includes data about the size and nature of the image as well as the detailed
quantization matrices and Huffman code tables that are being used. (These
are required in order for the JPEG decompression to decode the resulting
bitstream.)

The JPEG algorithm then segments the image to be coded into a series of
MCUs (Minimum Coded Unit) consisting of four 8x8 pixel blocks of the
luminance component and the corresponding 8x8 pixel blocks for each of the
two color difference components. Each of these 8x8 pixel blocks is then
processed as follows:

o 2-D DCT
A two-dimensional transform is performed on the data resulting in an
8x8 array of frequency-domain coefficients for the block. A “fast”
algorithm analogous to the FFT (Fast-Fourier-Transform) is used. The
particular decomposition is such that 16 one-dimensional 8-point
transforms are performed each requiring 12 multiples and 32 adds.

o Quantization
Each of the frequency-domain coefficients is divided by a scale factor
unique to that particular spatial frequency to yield an integer “code”.
This will subsequently be used in a decoder (by multiplying by the
scale factor) to derive an approximation to the original frequency-
domain coefficient. JPEG is “lossy” in the sense that the decoded
images are an approximation to the original images and it is at this
stage that information is lost.

o Zig-Zag scan
The quantized coefficients are scanned in a “zig-zag” fashion to
produce a 1-D sequence of 64 coefficients. A large number of these
coefficients that are zero. Each non-zero coefficient is represented as
a “SIZE” value. The number of zero coefficients preceding the non-
zero coefficient is referred to as the “RUN”.

o Huffman encode
Each possible combination of RUN and SIZE is allocated a unique
Huffman code word such that statistically likely RUN-SIZE

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 6

combinations have short code words while RUN-SIZE combinations
that occur infrequently have long code words. The appropriate
Huffman code word is looked up (a table lookup operation) inserted
into the bitstream and followed by “SIZE” binary digits to specify the
value of the quantized coefficient.

(This description glosses over many details but gives a general feel for the
operations performed.)

The JPEG decompression benchmark essentially performs the same series of
steps, but in reverse. Huffman decoding is a somewhat more complex
operation to Huffman encoding (which is just a simple table lookup). The
Inverse Quantization stage involves multiplication rather than division and
may therefore be less demanding on many processors. However in broad
terms the computational burden of decoding JPEG is similar to that of
encoding.

Analysis of
Computing
Resources

The JPEG benchmarks use a wide range of types of operations:

o Operations on 8-bit data for the scaling and color space pre- and post-
processing stages.

o Extensive arithmetic on 16-bit data in the transform (DCT) and
quantization stages with various intermediate values requiring more
than 16-bits.

o Table lookup and low-level bit manipulation operations for Huffman
coding and decoding and assembling and unpacking the coded
bitstream.

The image used in the benchmark is relatively small (320 pixels by 240 lines)
with three bytes per pixel. (A total of 225 Kbytes.) JPEG is reasonably
scalable and engineers might broadly expect the time required to process an
image to scale proportionally with the number of pixels. However, the
computational demands of JPEG are dependent on image content, particularly
in the entropy (Huffman) coding section, and since the statistical content of
typical images does vary with image resolution caution should be exercised in
scaling performance over a wide range.
Users of these benchmark results should also be aware that it is NOT
designed to indicate worst-case performance characteristics. The
computational demands of JPEG are dependent on the specific image being
coded (or decoded) and the choice of coding “tools” and parameters that are
chosen.

Though the image and encoded data buffer sizes in memory are large, the
algorithm proceeds block-by-block and the data for a block will generally be
in cache.

The high spatial and temporal locality of reference inherent in the JPEG
algorithm allows processors to make good use of caches. Even small data
caches work well, with miss rates decreasing as cache size increases, there is

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 7

no “knee” in the curve where performance increases markedly because the
data fits within the cache. The small size of the algorithm kernel will fit in
even very small instruction caches (for example 4Kbytes), however the total
code size is significantly larger so that larger instruction caches do provide
additional performance benefit.

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 8

ConsumerBench™ Version 1.1 Benchmark Name:

RGB to CMYK Conversion

Highlights
 Benchmarks digital image

processing performance in printers
and other digital imaging products.

 Explores basic arithmetic and
minimum value detection
capability.

 This benchmark provides
opportunities for Full-Fury
benchmark optimization.
Conditional move and multi-Byte
processing SIMD or VLIW
architectures are effective for
example.

Application RGB to CMYK conversion is widely used in color printers. RGB inputs from PC

data is converted to CMYK color signals for printing.

Benchmark
Description

This benchmark explores the target CPU capability for basic arithmetic and
minimum value detection.
R, G, B 8-bit pixel color image input is fed to the following equation:

/* calculate complementary colors */
c = 255 – R;
m = 255 – G;
y = 255 – B;

/* find the black level k */
K = minimum (c,m,y)

/* correct complementary color lever based on k */
C = c – K
M = m – K
Y = y - K
RGB values are in the range of [0:255]..
CMYK values are in the range of [0:255]..

The input and output data size is 320-pixels in the horizontal direction and
240-pixels in the vertical direction. The 320x240 data for RGB and CMYK is
stored sequentially as.
R[0], G[0], B[0], R[1], G[1], B[1],………………R[76799], G[76799], B[76799]
C[0], M[0], Y[0], K[0], C[1], M[1], Y[1],K[1]……C[76799], M[76799],
Y[76799], K[76799]
The pointers are just incremented by one to access R, G, B or C, M, Y, K data
is this order.

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 9

If the benchmark score is extrapolated for a larger image, the processing
time will be almost linearly proportional to the pixel count (e.g. For a 640 x
480 image, it will be x4 times.) The iteration/sec score will be the inverse
e.g. for a 640 x 480 image, iteration/sec it will be x1/4. There is data
dependency in the cycle counts for the minimum value K search, due to
branch taken or not taken. If this operation is handled by conditional move,
the cycle will constant.

Analysis of
Computing
Resources

Out of the Box Benchmark: A ‘for loop’ calculates the conversion of a set of
RGB inputs and CMYK outputs at a time. A set of R, G, B input data is read
from the memory by incrementing a read pointer. A set of output C, M, Y, K
output data is written back to the memory by incrementing a write pointer.
There is no complex 2-dimensonal access like the high pass grey-scale filter
benchmark.
The complementary color calculation and correction are simple subtract
calculations without any MAC operation.
The minimum value search has two branches for processing each pixel.
If (c<m) {
 K = (Byte)(c<y ? c:y);
 }
 else {
 K = (Byte)(m<y ? m:y);
 }

This can be a very expensive routine because of the branch penalty.

Full-Fury Benchmark: By using compare and conditional moves, the branch
penalty can be avoided. VLIW and SIMD can process multiple Byte of data at
a time. A SIMD architecture which can handle multiple of Byte data at a time,
is especially suited to this benchmark e.g. A 4-way SIMD microprocessor can
handle 4 x 8-bit data every cycle.

Special
Notes

Regarding the memory architecture, the image data is used just once and
there is no benefit from a big Data Cache, unless the microprocessor has a
cache prefetch feature. A small Data Cache will work to fetch consecutive
data and avoid external memory access overhead. The code size is trivial and
easily fits in to a small L1 Instruction Cache.

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 10

ConsumerBench™ Version 1.1 Benchmark Name:

RGB to YIQ Conversion

Highlights
 Benchmarks performance for

digital video processing.
 Explores multiply / accumulate

capability.

 This benchmark has opportunities
for Full-Fury benchmark
optimizations, especially by SIMD
and VLIW architectures.

Application RGB to YIQ conversion is used in the NTSC encoder where the RGB inputs

from the camera are converted to a luminance (Y) and two chrominance
information (I,Q). In the NTSC encoder, these I,Q signals are modulated by a
subcarrier and added to the Y signal.

Historically, when color TVs appeared in the market, they had to coexist with
the existing monochrome TVs and this was made possible with the NTSC
signal structure. The chrominance signals are averaged out as a fine mesh of
invisible signals in the monochrome TV sets.
YUV used in the European PAL standard and YCbCr used in the JPEG standard
have different codings. All three standards share the same luminance signal Y
but the chrominance calculations are different. The matrix calculation scheme
used in the RGB to YIQ can be applied to these standards too.

In the actual products, this trivial calculation is usually performed in
dedicated hardware, especially in digital video products. For cost saving and
flexibility, this algorithm can be implemented in software if the CPU is
powerful enough and where the digital image is a still picture.

Benchmark
Description

This benchmark explores the capability of the CPU to perform a
straightforward matrix multiply/accumulate calculation.
The R, G, B 8-bit pixel color image input is processed as follows:

Y = 0.299*R + 0.587*G + 0.114*B
I = 0.596*R – 0.275*G – 0.321*B
Q = 0.212*R – 0.523*G + 0.311*B
RGB values are in the range of [0:255]. The conversion coefficients are 16-
bits. The multiply/accumulate results are shifted right by 16-bits. Before the
shift, 1 is added to a bit location right to the LSB of the shifted result for
rounding to the nearest integer.
The output is 8-bit data. Y is in the range of [0,255] and I,Q in the range of
[-127, 127].

The input and output data size is 320-pixels in the horizontal direction and

 An Industry-Standard Benchmark Consortium

EEMBC ConsumerBench Data Book www.eembc.org 11

240-pixels in the vertical direction. The 320x240 data for RGB and YIQ are
stored sequentially as.
R[0], G[0], B[0], R[1], G[1], B[1],………R[76799], G[76799], B[76799]
Y[0], I[0], Q[0], Y[1], I[1], Q[1],………Y[76799], I[76799], Q[76799]
The pointers are just incremented by one to access R, G, B or Y, I, Q data is
this order.

Analysis of
Computing
Resources

Out of the Box Benchmark: A ‘for loop’ calculates the conversion of a set of
RGB inputs and YIQ outputs at a time. A set of R, G, B input data is read
from the memory by incrementing a read pointer. A set of output Y, I, Q
output data is written back to the memory by incrementing a write pointer.
There is no complex 2-dimensonal access such as that in the high pass grey-
scale filter benchmark.
The calculation is a straightforward multiplication and accumulation that a
microprocessor with a single-cycle MAC unit will benefit from.
The code size is trivial and easily fits in to a small L1 Instruction Cache.

Full-Fury Benchmark: Because of the simple structure of the multiplication
and accumulation, a VLIW or SIMD architecture with multiple of MAC units
can be used to accelerate performance. A further optimization is the loading
of multiple Bytes at a time. Software pipelining could be used to pass the
loaded data efficiently to the MAC unit for calculation.

