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ConsumerBench™ Version 1.1 Benchmark Name:  

High Pass Grey-Scale Filter
 

Highlights 
 Benchmarks performance for 

digital image processing used in 
digital still camera and other 
digital image products 

 Explores 2-D data array access and 
multiply / accumulate capability. 

 This benchmark has potential for 
Full-Fury benchmark optimization, 
especially by SIMD and VLIW 
architectures. 

 

 
 
Application A high pass grey-scale filter is used in the front end processing of DSCs 

(Digital Still Camera). RGB data from either CCD or CMOS sensors is pre-
processed by this filter to deliver image enhancement, and then passed to 
the JPEG image compression processing. This filter takes a “blurry” image 
and sharpens it with a 2-dimensional spatial filter. 
DSCs implement this filter either in software or hardware, with software 
giving the flexibility to add customization for picture quality. The number of 
filter taps can vary from 3(H) x 3(V) to more than 5(H) x 5(V). 
This benchmark is one of the most frequently used algorithms in image 
processing and represents a good measure of the CPU performance in digital 
imaging products.  
 

Benchmark 
Description 

This benchmark explores the target CPU’s capability to perform two 
dimensional data array access and multiply/accumulate calculation.  
For each pixel in the image, the filter calculates the output result from the 9 
pixels (including the center pixel) multiplied by filter coefficients, 
accumulated and then shifted left by 8-bits. The 2-dimensional coefficients 
used here are: 
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Each pixel is computed according to the following equation:. 

 
Here, P(i) is the pixel intensity, c is the center location of the filter window, w 
is the width of the input image. The data type of P(i) is Byte, and the two 
dimensional data is arranged in a linear way. Therefore addition or 

F11*P(c-w-1)
+F12*P(c-1)
+F13*P(c+w-1)

+F21*P(c-w)
+F22*P(c)
+F23*P(c+w)

+F31*P(c-w+1)
+F32*P(c+1)
+F33*P(c+w+1) )

PelValue = (Short)( 

Out = (Byte)(PelValue >>8); 
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subtraction of the horizontal image width “w” and offset of “-1” or “+1” are 
required to retrieve the 2-dimension window data. The accumulation is 
performed as a 16-bit data and the final output data is converted to a Byte 
data after a shift right by 8-bits. The top/left and right/left borders are black 
out by assigning “BLACK” value of 0.  
 
The input data size is 320-pixels in the horizontal direction and 240-pixels in 
the vertical direction. This is a monochrome or gray-scale calculation. It is 
not an RGB calculation where the same process is performed three times. 
Usually the enhancement is performed just in the luminance signal Y, which 
is the gray-scale signal. 
If the benchmark score is extrapolated for a larger image, the processing 
time will be almost linearly proportional to the pixel count (e.g. For a 640 x 
480 image, it will be x4 times). The iteration/sec score will be the inverse 
e.g. for a 640 x 480 image, iteration/sec it will be x1/4.  
 

Analysis of 
Computing 
Resources 

Out of the Box Benchmark: A ‘for loop’ calculates the filter output one 
pixel at a time. For one pixel calculation, the center pixel itself and the eight 
neighbor pixel data should be loaded. This is a time consuming process, 
considering the offset/width index calculation, and the time spent for the 
memory or cache access. Higher performance would be expected from a 
microprocessor with a single-cycle MAC unit. 
 
Full-Fury Benchmark: Because of the simple structure of the multiplication 
and accumulation, a VLIW or SIMD architecture with multiple MAC units are 
able to offer a simple acceleration. Another possible optimization is loading 
multiple Bytes at a time, although a SIMD architecture may show some 
overhead for the rearranging the data to feed the SIMD engine.   
 
Regarding the memory architecture, the image data is repeatedly used for 
the consecutive window and can benefit from a Data Cache.  The code size is 
trivial and will easily fit in to a small L1 Instruction Cache. 
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ConsumerBench™ Version 1.1 Benchmark Name: JPEG 

 
Highlights 

 Benchmarks Potential Performance 
for still picture image coding (e.g. 
still camera) 

 Compression and decompression 
benchmarks 

 Integer math, with diverse operand 
types, accessing large image 
memories 

 
 
Application The JPEG compression benchmark takes an image and encodes it to produce 

a compressed representation. The JPEG image compression standard 
provides for a wide range of options in the way that images are compressed. 
The benchmark uses the baseline subset of image compression “tools” with 
parameters that would generally be regarded as typical. 
 
The JPEG decompression benchmark essentially reverses the process of the 
compression benchmark. Since the compressed image that is used by the 
benchmark is that produced by the compression benchmark (above) it uses 
the same set of image coding tools and parameters. 
 
This is the particular image processed during these benchmarks: 
 

 
 
The benchmark provides an indication of the potential performance of 
a microprocessor in an application requiring still-image compression 
and decompression (for example a still picture camera). 
 

Benchmark 
Description 

The JPEG compression benchmark takes an image and encodes it. The image 
used in the benchmark is of relatively low resolution (320 pixels by 240 lines) 
represented in the RGB (Red-Green-Blue) color space, with each component 
being represented by 8-bit data. 
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The benchmark first performs a number of preprocessing steps on the image 
data: 
 

o The image is color-space converted to a YCrCb color space that uses a 
luminance, Y, component (a black-and-white image) together with two 
color-difference components, Cr and Cb. 

o The two color difference components are scaled so as to have one half 
the number of pixels and one half the number of lines as the 
luminance component. 

 
The benchmark code then produces the JPEG header information which 
includes data about the size and nature of the image as well as the detailed 
quantization matrices and Huffman code tables that are being used. (These 
are required in order for the JPEG decompression to decode the resulting 
bitstream.) 
 
The JPEG algorithm then segments the image to be coded into a series of 
MCUs (Minimum Coded Unit) consisting of four 8x8 pixel blocks of the 
luminance component and the corresponding 8x8 pixel blocks for each of the 
two color difference components. Each of these 8x8 pixel blocks is then 
processed as follows: 
 

o 2-D DCT 
A two-dimensional transform is performed on the data resulting in an 
8x8 array of frequency-domain coefficients for the block. A “fast” 
algorithm analogous to the FFT (Fast-Fourier-Transform) is used. The 
particular decomposition is such that 16 one-dimensional 8-point 
transforms are performed each requiring 12 multiples and 32 adds. 
 

o Quantization 
Each of the frequency-domain coefficients is divided by a scale factor 
unique to that particular spatial frequency to yield an integer “code”. 
This will subsequently be used in a decoder (by multiplying by the 
scale factor) to derive an approximation to the original frequency-
domain coefficient. JPEG is “lossy” in the sense that the decoded 
images are an approximation to the original images and it is at this 
stage that information is lost. 
 

o Zig-Zag scan 
The quantized coefficients are scanned in a “zig-zag” fashion to 
produce a 1-D sequence of 64 coefficients. A large number of these 
coefficients that are zero. Each non-zero coefficient is represented as 
a “SIZE” value. The number of zero coefficients preceding the non-
zero coefficient is referred to as the “RUN”. 
 

o Huffman encode 
Each possible combination of RUN and SIZE is allocated a unique 
Huffman code word such that statistically likely RUN-SIZE 
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combinations have short code words while RUN-SIZE combinations 
that occur infrequently have long code words. The appropriate 
Huffman code word is looked up (a table lookup operation) inserted 
into the bitstream and followed by “SIZE” binary digits to specify the 
value of the quantized coefficient. 

 
(This description glosses over many details but gives a general feel for the 
operations performed.) 
 
The JPEG decompression benchmark essentially performs the same series of 
steps, but in reverse. Huffman decoding is a somewhat more complex 
operation to Huffman encoding (which is just a simple table lookup). The 
Inverse Quantization stage involves multiplication rather than division and 
may therefore be less demanding on many processors. However in broad 
terms the computational burden of decoding JPEG is similar to that of 
encoding. 
 

Analysis of 
Computing 
Resources 

The JPEG benchmarks use a wide range of types of operations: 
 

o Operations on 8-bit data for the scaling and color space pre- and post-
processing stages. 

o Extensive arithmetic on 16-bit data in the transform (DCT) and 
quantization stages with various intermediate values requiring more 
than 16-bits. 

o Table lookup and low-level bit manipulation operations for Huffman 
coding and decoding and assembling and unpacking the coded 
bitstream. 

 
The image used in the benchmark is relatively small (320 pixels by 240 lines) 
with three bytes per pixel. (A total of 225 Kbytes.) JPEG is reasonably 
scalable and engineers might broadly expect the time required to process an 
image to scale proportionally with the number of pixels. However, the 
computational demands of JPEG are dependent on image content, particularly 
in the entropy (Huffman) coding section, and since the statistical content of 
typical images does vary with image resolution caution should be exercised in 
scaling performance over a wide range. 
Users of these benchmark results should also be aware that it is NOT 
designed to indicate worst-case performance characteristics. The 
computational demands of JPEG are dependent on the specific image being 
coded (or decoded) and the choice of coding “tools” and parameters that are 
chosen. 
 
Though the image and encoded data buffer sizes in memory are large, the 
algorithm proceeds block-by-block and the data for a block will generally be 
in cache. 
 
The high spatial and temporal locality of reference inherent in the JPEG 
algorithm allows processors to make good use of caches. Even small data 
caches work well, with miss rates decreasing as cache size increases, there is 
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no “knee” in the curve where performance increases markedly because the 
data fits within the cache. The small size of the algorithm kernel will fit in 
even very small instruction caches (for example 4Kbytes), however the total 
code size is significantly larger so that larger instruction caches do provide 
additional performance benefit. 
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ConsumerBench™ Version 1.1 Benchmark Name:  

RGB to CMYK Conversion 
 

Highlights 
 Benchmarks digital image 

processing performance in printers 
and other digital imaging products. 

 Explores basic arithmetic and 
minimum value detection 
capability. 

 This benchmark provides 
opportunities for Full-Fury 
benchmark optimization. 
Conditional move and multi-Byte 
processing SIMD or VLIW 
architectures are effective for 
example. 

 
 
 
Application RGB to CMYK conversion is widely used in color printers. RGB inputs from PC 

data is converted to CMYK color signals for printing.  
 

Benchmark 
Description 

This benchmark explores the target CPU capability for basic arithmetic and 
minimum value detection.  
R, G, B 8-bit pixel color image input is fed to the following equation:  
 
/* calculate complementary colors */ 
c = 255 – R; 
m = 255 – G; 
y = 255 – B; 
 
/* find the black level k */ 
K = minimum (c,m,y)  
 
/* correct complementary color lever based on k */ 
C = c – K 
M = m – K 
Y = y - K 
RGB values are in the range of [0:255].. 
CMYK values are in the range of [0:255].. 
 
The input and output data size is 320-pixels in the horizontal direction and 
240-pixels in the vertical direction. The 320x240 data for RGB and CMYK is 
stored sequentially as. 
R[0], G[0], B[0], R[1], G[1], B[1],………………R[76799], G[76799], B[76799] 
C[0], M[0], Y[0], K[0], C[1], M[1], Y[1],K[1]……C[76799], M[76799], 
Y[76799], K[76799] 
The pointers are just incremented by one to access R, G, B or C, M, Y, K data 
is this order. 
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If the benchmark score is extrapolated for a larger image, the processing 
time will be almost linearly proportional to the pixel count (e.g. For a 640 x 
480 image, it will be x4 times.)  The iteration/sec score will be the inverse 
e.g. for a 640 x 480 image, iteration/sec it will be x1/4. There is data 
dependency in the cycle counts for the minimum value K search, due to 
branch taken or not taken. If this operation is handled by conditional move, 
the cycle will constant. 
 
 

Analysis of 
Computing 
Resources 

Out of the Box Benchmark: A ‘for loop’ calculates the conversion of a set of 
RGB inputs and CMYK outputs at a time. A set of R, G, B input data is read 
from the memory by incrementing a read pointer. A set of output C, M, Y, K 
output data is written back to the memory by incrementing a write pointer. 
There is no complex 2-dimensonal access like the high pass grey-scale filter 
benchmark. 
The complementary color calculation and correction are simple subtract 
calculations without any MAC operation. 
The minimum value search has two branches for processing each pixel.  
If (c<m) { 
            K = (Byte)(c<y ? c:y); 
         } 
    else { 
            K = (Byte)(m<y ? m:y); 
         } 
 
This can be a very expensive routine because of the branch penalty. 
 
Full-Fury Benchmark: By using compare and conditional moves, the branch 
penalty can be avoided. VLIW and SIMD can process multiple Byte of data at 
a time. A SIMD architecture which can handle multiple of Byte data at a time, 
is especially suited to this benchmark e.g. A 4-way SIMD microprocessor can 
handle 4 x 8-bit data every cycle. 

 
Special 
Notes 

Regarding the memory architecture, the image data is used just once and 
there is no benefit from a big Data Cache, unless the microprocessor has a 
cache prefetch feature. A small Data Cache will work to fetch consecutive 
data and avoid external memory access overhead. The code size is trivial and 
easily fits in to a small L1 Instruction Cache. 
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ConsumerBench™ Version 1.1 Benchmark Name:  

RGB to YIQ Conversion 
 

Highlights 
 Benchmarks performance for 

digital video processing.  
 Explores multiply / accumulate 

capability. 

 This benchmark has opportunities 
for Full-Fury benchmark 
optimizations, especially by SIMD 
and VLIW architectures. 

 
 
 
Application RGB to YIQ conversion is used in the NTSC encoder where the RGB inputs 

from the camera are converted to a luminance (Y) and two chrominance 
information (I,Q). In the NTSC encoder, these I,Q signals are modulated by a 
subcarrier and added to the Y signal.  
 
Historically, when color TVs appeared in the market, they had to coexist with 
the existing monochrome TVs and this was made possible with the NTSC 
signal structure. The chrominance signals are averaged out as a fine mesh of 
invisible signals in the monochrome TV sets. 
YUV used in the European PAL standard and YCbCr used in the JPEG standard 
have different codings. All three standards share the same luminance signal Y 
but the chrominance calculations are different. The matrix calculation scheme 
used in the RGB to YIQ can be applied to these standards too. 
 
In the actual products, this trivial calculation is usually performed in 
dedicated hardware, especially in digital video products. For cost saving and 
flexibility, this algorithm can be implemented in software if the CPU is 
powerful enough and where the digital image is a still picture.  
 

Benchmark 
Description 

This benchmark explores the capability of the CPU to perform a 
straightforward matrix multiply/accumulate calculation.  
The R, G, B 8-bit pixel color image input is processed as follows:  
 
Y = 0.299*R + 0.587*G + 0.114*B 
I = 0.596*R – 0.275*G – 0.321*B 
Q = 0.212*R – 0.523*G + 0.311*B  
RGB values are in the range of [0:255]. The conversion coefficients are 16-
bits. The multiply/accumulate results are shifted right by 16-bits. Before the 
shift, 1 is added to a bit location right to the LSB of the shifted result for 
rounding to the nearest integer. 
The output is 8-bit data. Y is in the range of [0,255] and I,Q in the range of 
[-127, 127]. 
 
The input and output data size is 320-pixels in the horizontal direction and 
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240-pixels in the vertical direction. The 320x240 data for RGB and YIQ are 
stored sequentially as. 
R[0], G[0], B[0], R[1], G[1], B[1],………R[76799], G[76799], B[76799] 
Y[0], I[0], Q[0], Y[1], I[1], Q[1],………Y[76799], I[76799], Q[76799] 
The pointers are just incremented by one to access R, G, B or Y, I, Q data is 
this order. 
 

Analysis of 
Computing 
Resources 

Out of the Box Benchmark: A ‘for loop’ calculates the conversion of a set of 
RGB inputs and YIQ outputs at a time. A set of R, G, B input data is read 
from the memory by incrementing a read pointer. A set of output Y, I, Q 
output data is written back to the memory by incrementing a write pointer. 
There is no complex 2-dimensonal access such as that in the high pass grey-
scale filter benchmark. 
The calculation is a straightforward multiplication and accumulation that a 
microprocessor with a single-cycle MAC unit will benefit from. 
The code size is trivial and easily fits in to a small L1 Instruction Cache. 
 
Full-Fury Benchmark: Because of the simple structure of the multiplication 
and accumulation, a VLIW or SIMD architecture with multiple of MAC units 
can be used to accelerate performance. A further optimization is the loading 
of multiple Bytes at a time. Software pipelining could be used to pass the 
loaded data efficiently to the MAC unit for calculation. 
 
 

 
 
 


