
w w w . e e m b c . o r g

software
benchmark
data book

AutoBench™1.1

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 1

Table of Contents

Angle to Time Conversion ..2

Basic Integer and Floating Point ...4

Bit Manipulation ...5

Cache “Buster” ..6

CAN Remote Data Request ..7

Fast Fourier Transform (FFT) ...9

Finite Impulse Response (FIR) Filter ..10

Inverse Fast Fourier Transform (iFFT) ...12

Infinite Impulse Response (IIR) Filter ..13

Matrix Arithmetic ...15

Pointer Chasing ..16

Pulse Width Modulation (PWM) ...17

Road Speed Calculation ...19

Table Lookup and Interpolation ..21

Tooth to Spark ...23

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 2

AutoBench™ Version 1.1 Benchmark Name: Angle to
Time Conversion

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive application
where the CPU reads a counter which measures the real-time delay between
pulses sensed from a toothed wheel (gear) on the crankshaft of an engine.
Then the CPU determines the Top Dead Center (TDC) position on the
crankshaft, computes the engine speed, and provides a conversion from the
tooth wheel pulses to precise crankshaft angle position. This value is
expressed in linear time from TDC. The tooth wheel pulses actually represent
crankshaft angle, and the delay between pulses yields angular velocity of the
crankshaft (engine speed).

The kernel starts each pass of the loop by reading a previous real-time
counter value from the test data file. The previous counter value is
subtracted from the current counter value to determine the time between
teeth edges. As long as the CPU does not detect TDC, the tooth pulse
counter is incremented, and indicates progress through a crankshaft
revolution. As the tooth pulse counter increments, each cylinder is ‘fired’ in
turn once its ‘firing angle’ (tooth number) is reached. At each cylinder firing a
precise ‘firing time’ is issued to some external hardware counter. Detection of
the next TDC causes the tonewheel tooth counter to be reset to zero, and the
entire process begins again.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 2)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 3

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 4

AutoBench™ Version 1.1 Benchmark Name: Basic

Integer and Floating Point

Benchmark
Description

This EEMBC benchmark algorithm measures basic integer and floating point
capabilities.

The benchmark calculates the arctan(x) function using the telescoping
series:

arctan(x) = x * P(x^2) / Q(x^2)

where P and Q are polynomials, and x is assumed to be in the range from 0
to tan(pi/4). The benchmark limits the input domain to ensure this condition
is met and adjusts any output values which correspond to limited input
values so that the correct result is always obtained.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 5

AutoBench™ Version 1.1 Benchmark Name: Bit

Manipulation

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application where large numbers of bits have to be manipulated, many
decisions have to be taken based upon bit values and bit arithmetic takes
place.

The kernel simulates part of a character display system where characters are
shifted into a line buffer. The line buffer is then converted into a series of
pixels by mapping characters through a display character ROM. The pixels
are moved into a display buffer until the entire buffer is displayed.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 6

AutoBench™ Version 1.1 Benchmark Name: Cache

“Buster”

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application without a cache. It highlights performance in those situations
when long sections of control code are executed with very little backwards
branching or revisiting of the same data. Processors which utilize look ahead
mechanisms rather than caches should perform well here.

The kernel uses an intricate algorithm involving data and function pointers to
ensure that data and code locality does not occur during execution.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 7

AutoBench™ Version 1.1 Benchmark Name: CAN
Remote Data Request

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive application
where a Controller Area Network (CAN) interface node exists for exchanging
messages across the system.

The situation being simulated is that which occurs when a Remote Data
Request (RDR) message is received by all nodes. Every node must check the
identifier of the message to see if they own that type of data. If yes, then the
responsible node must gather the data and transmit it back onto the network
for the originator of the RDR.

The kernel fetches received messages from a simulated receiver buffer,
checks the identification (ID) field and ignores those messages which it is not
interested in. Interesting messages are then usually stored, unless they are a
RDR message,. In this case the data associated with the ID is sought and
then placed into a simulated transmit buffer for sending back to the
originator.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 7)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 8

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 9

AutoBench™ Version 1.1 Benchmark Name: Fast

Fourier Transform (FFT)

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application performing a power spectrum analysis of a time varying input
waveform.

The kernel computes the ‘radix-2’ decimation in frequency Fast Fourier
Transform (FFT) on complex input values stored in real and imaginary
arrays. After the time domain values are converted to the equivalent
frequency domain, the power spectrum is calculated.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 10

AutoBench™ Version 1.1 Benchmark Name: Finite
Impulse Response (FIR)
Filter

Benchmark
Description

This EEMBC benchmark algorithm simulates an embedded
automotive/industrial application where the CPU performs a Finite Impulse
Response (FIR) filtering sample on 16-bit or 32-bit fixed-point values. High-
and low-pass FIR filters simply process the input signal data.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 11

AutoBench™ Version 1.1 Benchmark Name: Inverse
Discrete Cosine Transform
(iDCT)

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application performing digital video and graphics applications such as image
recognition.

The kernel performs an inverse discrete cosine transform (iDCT) on an input
data matrix set using 64-bit integer arithmetic.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 12

Automotive/Industrial
Subcommittee

Benchmark Name: Inverse
Fast Fourier Transform
(iFFT)

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application analysis of a time domain analysis of an input frequency
spectrum. This might be used in noise cancellation applications.

The kernel computes the ‘radix-2’ decimation in frequency inverse Fast
Fourier Transform (FFT) on complex input values stored in real and
imaginary arrays.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 13

AutoBench™ Version 1.1 Benchmark Name: Infinite
Impulse Response (IIR)
Filter

Benchmark
Description

This Embedded Microprocessor Benchmark Consortium (EEMBC) benchmark
algorithm simulates an embedded automotive/industrial application where
the CPU performs an Infinite Impulse Response (IIR) filtering sample on 16-
bit or 32-bit fixed-point values. It implements a Direct-Form II N-cascaded,
second-order IIR filter. IIR filters can often be more efficient that FIR filters,
in terms of attaining better magnitude response with a given filter order. This
is because IIR filters incorporate feedback and are capable of realizing both
poles and zeros of a system, whereas FIR filters are not capable of realizing
the zeros. The difference equation for a Direct Form II N-Cascaded Direct
second-order IIR filter is:

{u(n) = x(n) + a(1)*x(n-1) + a(2)*x(n-2),
{y(n) = b(0)*u(n) + b(1)*u(n-1) + b(2)*u(n-2);

where:
x(n) = input signal of the biquad at time n
u(n) = state variable of the biquad at time n
y(n) = output signal of the biquad at time n a(n),
b(n) = coefficients of the biquad

High- and low-pass IIR filters process the input signal data. Binary
comparators also digitize the outputs of the filters. This IIR filter benchmark
explores a CPU’s ability to perform multiply-accumulates and rounding. It
employs typical DSP functions that would replace an analog signal chain
comprised of op-amps and comparators.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 13)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 14

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 15

AutoBench™ Version 1.1 Benchmark Name: Matrix

Arithmetic

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application which performs a lot of matrix arithmetic.

The kernel performs an LU decomposition on ‘n x n’ input matrices. It also
computes the determinant of the input matrix then a cross product with a
second matrix.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 16

AutoBench™ Version 1.1 Benchmark Name: Pointer

Chasing

Benchmark
Description

This EEMBC benchmark simulates an embedded automotive/industrial
application which performs a lot of pointer manipulation.

The kernel employs a doubly linked list then searches the list for entries
which match an input token. A large set of input tokens is used to exercise
the entire list. The number of steps taken to find each input token is
recorded.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 17

AutoBench™ Version 1.1 Benchmark Name: Pulse
Width Modulation (PWM)

Benchmark
Description

This EEMBC benchmark simulates an application in which an actuator is
driven by a PWM signal proportional to some input. Specifically, the
algorithm presumes that the embedded processor is driving an H-bridge
motor driver with both direction and enable signals. Outputs are provided for
two such H-bridge drivers, as might be used for a bipolar stepper motor
driver, or proportional DC motor driver.

The stepper motor is controlling the position of the actuator. We can control
it by passing a desired position command to the algorithm, and let the
algorithm control moving the motor to that position.

On each pass, the algorithm simulates the PWM signals and checks to see if
the motor has reached the commanded position once per PWM cycle. By
providing the stepper motor with phasing signals as well as PWM control of
each phase, the motor can be micro-stepped to provide finer resolution and
smoother motion. The phase control provides direction signals for energizing
each of the stepper motor coils in a typical bipolar full-step sequence. The
algorithm could be used in applications with actuators other than stepper
motors, making use of just the PWM feature without the phasing control, in
which case the PWM signals would provide proportional velocity control, while
the phase signals would provide motor direction.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 17)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 18

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 19

AutoBench™ Version 1.1 Benchmark Name: Road

Speed Calculation

Benchmark
Description

This EEMBC benchmark simulates an automotive application where the CPU
repeatedly calculates the road speed based on differences between timer
counter values. All values are filtered to minimize errors due to noise. The
calculation involves straight-forward arithmetic, but must also deal with the
situation when the timer counter rolls over; or when the measurement
results show abrupt changes. At zero road speed, the application has to
ensure that it does not infinitely wait for a counter increment.

The benchmark has a mix of arithmetic and flow control routines. The
arithmetic portion involves add, subtract, multiply and divide. For low end
microcontrollers, the arithmetic capability may become a performance
bottleneck. For higher end processors, the pipeline efficiency may be more
important than raw performance since there are a significant number of
compare and branch instructions (i.e. flow control). A processor that is good
in both aspects will shine with this kind of benchmark.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 19)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 20

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 21

AutoBench™ Version 1.1 Benchmark Name:

Table Lookup and
Interpolation

Benchmark
Description

This EEMBC benchmark algorithm is used in engine controllers, anti-lock
brake systems, and other applications to access constant data quicker than
by raw calculation. Instead of storing all data points, which would consume a
lot of memory, selective data points are stored and the software then
interpolates between them. Data may be stored in 2 dimensional (X,Y) or 3
dimensional (X,Y,Z) tables.

For example, software periodically performs a table lookup process to derive
an output value Ignition Angle from two input variables, Engine Load and
Engine Speed. The engine control continuously derives the input variables,
Load and Speed, from external engine sensors. Speed is derived by
measuring the period between pulses from magnetic pickup sensing gear
teeth on the crankshaft. Load is derived from sensors measuring air flow
through the throttle body.

The bilinear interpolation technique determines values by using four points in
a grid that surrounds the desired point.

This algorithm simulates engine load and speed which are indices into an
“angle” table. The engine load (X) and engine speed (Y) values are calculated
and normalized. The ignition angle (Z) value is then interpolated from the
table.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 21)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 22

Algorithm
Flowchart

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 23

AutoBench™ Version 1.1 Benchmark Name: Tooth to

Spark

Benchmark
Description

This EEMBC benchmark simulates an automotive application where the CPU
controls fuel injection and ignition in the engine combustion process. Tooth-
to-Spark, part of an Engine Control Unit (ECU), performs real-time
processing of air/fuel mixture and ignition timing. Based on the operating
conditions presented to the ECU, the CPU adjusts the output values for fuel
injector duration and ignition timing from ‘nominal’ values on each pass.

The ECU determines whether the engine is running or not, and enables the
fuel pump and igniters accordingly. While the engine is being started, the
ECU performs special fuel injection duration and spark timing to optimize
starting conditions.

Once the engine is running, the CPU processes the output variables for
injector and igniter timing on each pass. The CPU primarily makes
adjustments according to the engine speed/load parameters, but also makes
lesser adjustments for other variables.

The entire process is repeated on each pass, taking input values from the
test data and computing new output values. The input test data can reside in
ROM or RAM, so comparisons can be made for performance from either
memory source.

Optimization
Rules

Category Allowed Disallowed

ANSI C X

Intrinsics/Language
Extensions

X

Custom Libraries X

Assembly
Language

X

HW Accelerators X

Algorithm
Flowchart
(page 23)

 An Industry-Standard Benchmark Consortium

EEMBC AutoBench Data Book www.eembc.org 24

Algorithm
Flowchart

	Untitled

