
 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

Characterization of the EEMBC Benchmark Suite

By Jason Poovey, North Carolina State University

EEMBC addresses the needs of embedded designers by providing a diverse suite of processor
benchmarks organized into categories that span numerous real-world applications. Research
done at North Carolina State University investigates the benchmark suites through the use of
benchmark characterization to create a description of each workload.

Benchmark characterization involves re-describing a workload as a set of quantifiable abstract
attributes. Designers can then use these measured attributes to determine program similarity.
By combining these characteristics with their knowledge of the actual application, designers can
select the most relevant benchmarks from the EEMBC suite to test the potential in situ
performance of an embedded processor.

We used a mixture of design characteristics including instructions/clock (IPC), branch mis-
prediction ratios, and dynamic instruction percentages. We also collected hardware design
metrics for caches and functional units that target the hardware requirements to achieve
certain performance goals.

Methodology

This study collected characteristics for the MIPS, PowerPC, x86, and PISA (used in
Simplescalar) architectures. The resulting combination of metrics provides an accurate
representation of the workload’s activity. Thus, designers can find which workloads are similar
to their own and then leverage the most relevant benchmarks as a proxy for architecture
design. The characteristics assist in this process by indicating the minimum hardware needed to
achieve a target level of performance.

We relied primarily on trace-driven simulation to characterize the processors listed above. We
used trace-driven simulation to collect data for cache design experiments as well as to reveal
the distribution of dynamic instructions.

Architecture Independent Architecture Dependent
 Cache Design for target miss ratios

 1% and 0.1% Target Miss Ratios
 Block sizes ranging from 24 to 27
 Set Associativities: Direct Mapped,

2-way, 4-way, and fully associative
 Functional Unit Requirements Distribution

 Target 85% Utilization
 ALU, MULTDIV, LSU, BRANCH, SHIFT

 Dynamic Instruction Mixes

 Instructions per Cycle
 Branch Mis-prediction Ratios

 Bimodal Predictor

Table 1 – Measured Benchmark Characteristics

 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

Cache Design

Block size, set associativity, and total size are the defining characteristics of caches.

Cache performance may vary significantly if any of these variables are changed. Therefore, it is
often very costly to perform an entire design space search because each cache configuration of
interest requires additional simulation. We used a single-pass simulator to allow for the
simultaneous evaluation of caches within a specified range of these three variables. Rather than
picking particular cache configurations, this tool isolates cache configurations that meet user-
specified performance goals. The single-pass simulator characterizes workloads in terms of
hardware requirements, rather than simply measuring the performance of a particular cache
realization. We chose miss ratios of 1% and 0.1% as target performance goals to demonstrate
the suggested cache sizes that would achieve the desired performance for L1 and L2 caches,
respectively. If cold misses cause a cache configuration to have a higher miss rate than the
user specified target, then the intrinsic miss ratio is targeted

Functional Unit Distribution

When designing a new system, designers must decide the number of functional units

(such as load/store units and multiply/divide units) that should be included in their design.
Rather than iteratively modifying the number of functional unit types and re-simulating, the
distribution measurements indicate the number of functional units needed for each type. The
functional unit distribution simulates an idealized out-of-order machine with an infinite width
and a perfect branch predictor. True dependencies between instructions thus become the only
bottleneck. We then collected data to determine the number of functional units requested at
any given time. In this study, the distribution results represent the number and type of
functional units necessary to meet workload demands for 85% of the execution time. The
functional units simulated were ALUs, load/store units, multiply/divide units, branch units, and
shift units.

Experimental Analysis

The functional unit distributions show the hardware needed to achieve maximum
parallelism on an idealized machine. To graphically represent the metrics of our simulations, we
used Kiviat graphs, which visualize multivariable data in a way that easily reveals program
behavior. As Figure 1 demonstrates, the results vary greatly between the benchmark suites.
This is significant for two reasons: it points out the application-specific nature of each
benchmark suite, and it shows that more than one suite must be run to comprehend the
capabilities of the processing platform.

 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

Figure 1 – Using Kiviat Graphs to Represent Functional Unit Distribution
(85% Utilization)

EEMBC’s Networking 2.0 suite has larger functional unit requirements than Networking 1.1,
indicating that greater parallelism is available in the latest version. TheAutoBench 1.1
automotive/industrial suite exhibits similar strains on functional units as Networking 2.0, with
the difference being that Networking 2.0 has slightly higher requirements for branch
instructions. In general, Networking had the largest percentage of branch instructions, and thus
required the largest number of corresponding functional units. Higher numbers of load/store

Function Unit Usage for Automotive Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Consumer Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Digital Entertainment Benchmarks (85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Networking Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Networking (Version 2) Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Office-Automation Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

Function Unit Usage for Telecom Benchmarks
(85% Utilization)

0

2

4

6

8
ALU

LSU

MULTDIVBRANCH

SHIFT

 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

functional units are beneficial in all suites except for TeleBench 1.1. This is the case not
because of a lack of memory instructions, but because as the instructions distribution indicates,
TeleBench 1.1 contains an average percentage of memory instructions for all benchmarks.
These memory instructions do not exhibit high parallelism, and thus do not benefit from
additional load/store functional units.

In our analysis, we determined that the DENBench 1.0 digital entertainment benchmarks place
the most demand on shift functional unit requirements, where four execution units are needed
to optimize performance. On the other hand, the OABench 1.1 office automation suite exhibits a
unique behavior, where only the ALU and LSU units are stressed.

Benchmark-Specific Analysis

The analysis above shows that there is workload variety between the different benchmark
suites. Further analysis shows that there is also significant variety internal to the particular
workload categories. For example, within AutoBench 1.0, aifft had very large cache
requirements, whereas iirflt did not. Pntrch showed a high percentage of memory accesses, but
did not require a significant cache size to obtain the desired performance goals.

Branch predictor accuracy is high for most benchmarks. However, some workloads, such as
aifftr and aiifft, show spikes in the mis-prediction rates. However, this is similar to many
embedded environments, where code is optimized for the absence of a branch predictor, which
is omitted to save space or power.

Similar workloads have similar shapes in the Kiviat graphs. Figure 2 shows a collection of Kiviat
graphs grouped based on workload similarity. In this figure, nine clusters were determined via
visual inspection.

No single suite exhibits homogeneous characteristics. Even the ConsumerBench 1.1 digital
imaging suite, which targets the most specific applications, spans two classification categories.
The most heterogeneous is AutoBench 1.1, which covers four of nine Kiviat classifications.
OABench 1.1 is interesting in that it contains only three benchmarks, each of which were
classified into different categories. Also of note is that workloads from differing suites exhibit
similar characteristics. For example, canrdr is very similar to many networking applications.
This means that workload activity is similar even between different suites, with only minor
differences in the magnitude of the specific metrics.

In the Networking suites, the pktflow and pktcheck benchmarks are implemented using four
different packet sizes. As the size of the packets increase, the cache activity also slowly
increases. Within the networking suites, there are differences between the Networking 1.0 and
Networking 2.0 ospf benchmarks. The Networking 2.0 version has greater ALU activity. Finally,
the rgbcmy and rgbyiq benchmarks require much larger caches to achieve a 0.1% miss ratio
versus a 1% miss ratio, showing that these benchmarks have many conflict misses that require
a larger cache size to remove.

 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

Figure 2 - Kiviat Plots of Combined Characteristics

a2time01 canrdr01 ttsprk01 pktcheckb512k pktcheckb1m tcpmixed pktflowb512k pktflowb1m pktcheckb2m pktcheckb4m

matrix01 rotate01 pktflowb2m pktflowb4m ospfv2 tcpbulk tcpjumbo

 dither01 cjpegv2 rgbhpgv2 mp2decode

0

17.5

35

52.5

70
% Mem

(1% FA B=5)*3

(0.1% FA B=5)*3

(1% FA B=7)*3

(0.1% FA B=7)*3

% ALU

IPC*20

% Branch

Branch Misprediction
Ratio*100

% Rest

pntrch01_lite.exe

0

10

20

30

40

50

60

70
% Mem

(1% FA B=5)*3

(0.1% FA B=5)*3

(1% FA B=7)*3

(0.1% FA B=7)*3

% ALU

IPC*20

% Branch

Branch Mispredic tion Ratio*100

% Rest

Memory Activity

Parallelism

Branch
Characterization

pntrch01_lite.exe

0

10

20

30

40

50

60

70
% Mem

(1% FA B=5)*3

(0.1% FA B=5)*3

(1% FA B=7)*3

(0.1% FA B=7)*3

% ALU

IPC*20

% Branch

Branch Mispredic tion Ratio*100

% Rest

Memory Activity

Parallelism

Branch
Characterization

A A A N2 N2 N2 N2 N2 N N

A N N N2 N2 N2

O D D D

N2
routelookupv2

 aifirf01
A

 basefp01
A

 idctrn01
A

 tblook01
A

 iirflt01
A

 text01
O fft00

T viterb00
T nat

N2
 ip_reassembly

N2

 aiifft01
A

 aifftr01
A

 rgbcmy01
C

 rgbyiq01
C

 djpegv2
D

rgbcmykv2
D

 rgbyiqv2
D

 huffde
D

 ospf
N

cjpeg
C djpeg

C rgbhpg01
C

 bitmnp01
A

 cacheb01
A

 pntrch01
A

 puwmod01
A

 rspeed01
A

 routelookup
N

 qos
N2

 conven00
T

aes
D

 des
D

mp4decode
D

 mp4decodepsnr
D

mp2enfix
D

 mp3playerfixed
D

 rsa
D

 autcor00
T

 fbital00
T

A = Automotive

C = Consumer

D = Digital Entertainmen

O = Office

N = Networking

N2 = Networking V2

T = Telecom

Suite Key

mp2decodfixpsnr
D mp2enf32

D
mp2decodef32

D

1

23 4

5 6

7

8

9

O

 An Industry Standard Benchmark Consortium

Copyright © 2007 by EEMBC

Conclusion

This experiment shows the diversity of the EEMBC benchmark suite as well as providing insight
into the specifics of each workload’s activity. By using a set of hardware design and
performance metrics, the results display an accurate representation of the workload’s inherent
behavior. As expected, we found diversity within and between the suites. This diversity ensures
that designers can use combinations of EEMBC workloads to represent most real-world
workloads and use this characterization data as a starting point to make effective design
choices.

